Skip to main content

Research News

academics

 

Clinical research courses

  • HIV-1 replicates in ninja-like ways. The virus slips through the membrane of vital white blood cells. Inside, HIV-1 copies its genes and scavenges parts to build a protective bubble for its copies. Scientists don't understand many of the details of how HIV-1 can fool our immune system cells so effectively. The virus infects 1.2 million people in the U.S. and 37 million people worldwide in 2018. Supercomputers helped model a key building block in the HIV-1 protective capsid, which could lead to strategies for potential therapeutic intervention in HIV-1 replication.

  • A research team from Massachusetts Eye and Ear and the Massachusetts Institute of Technology has shown that immune cells in the eye that developed in response to early exposure to bacteria are a key contributor to progressive vis8/9/2018ion loss from glaucoma, the second leading cause of irreversible blindness in the world. The findings, published online in Nature Communications, suggest that high pressure in the eye leads to vision loss by setting into motion an autoimmune response that attacks the neurons in the eye -- similar to immune responses triggered by bacterial infections. The discovery of these immune cells also reveals a promising new target for future therapies to be developed for the blinding condition.

  • Long-term use of either cannabis or cannabis-based drugs impairs memory say researchers.

    The study has implications for both recreational users and people who use the drug to combat epilepsy, multiple sclerosis and chronic pain.

  • San Antonio, Texas  A group of scientists at Texas Biomedical Research Institute have zeroed in on a new defense against HIV-1, the virus that causes AIDS. Led by Ruth Ruprecht, M.D., Ph.D., the team used an animal model to show for the first time that an antibody called Immunoglobulin M (IgM) was effective in preventing infection after mucosal AIDS virus exposure. Worldwide, an estimated 90% of new cases of HIV-1 are caused through exposure in the mucosal cavities like the inside lining of the rectum or vagina.

  • Technologies that are reducing costs and changing the ways in which researchers and clinicians process and use therapeutic cells are showcased in the August 2018 special issue of SLAS Technology. With leadership from guest editor Christopher Puleo, Ph.D., and colleagues of General Electric Global Research (Niskayuna, NY), the issue presents two review articles that detail the status of cell bioreactors in both stem cell and tissue/organ engineering applications and five original research reports by life sciences researchers from universities, pharma companies and hospitals in Australia and across the United States.

  • Gestational diabetes may increase the risk of blood vessel dysfunction and heart disease in offspring by altering a smooth muscle protein responsible for blood vessel network formation. Understanding of the protein's function in fetal cells may improve early detection of disease in children. The study is published ahead of print in the American Journal of Physiology--Cell Physiology.

  • People infected with HIV are twice as likely to suffer from heart disease, research has found.

    Analysis of global figures reveals that HIV-associated cardiovascular disease has more than tripled in the past 20 years as more people are living longer with the virus.

  • Omega 3 is a type of fat. Small amounts of omega 3 fats are essential for good health, and they can be found in the food that we eat. The main types of omega 3 fatty acids are; alpha­linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). ALA is normally found in fats from plant foods, such as nuts and seeds (walnuts and rapeseed are rich sources). EPA and DHA, collectively called long chain omega 3 fats, are naturally found in fatty fish, such as salmon and fish oils including cod liver oil.

  • A class of molecules formed when the body metabolizes omega-3 fatty acids could inhibit cancer's growth and spread, University of Illinois researchers report in a new study in mice. The molecules, called endocannabinoids, are made naturally by the body and have similar properties to cannabinoids found in marijuana - but without the psychotropic effects.

Subscribe to Research News