A potential treatment for the world’s leading cause of kidney failure in children needing dialysis has been discovered by an international team of scientists.
Artificial intelligence has exploded in popularity and is being harnessed by some scientists to predict which molecules could treat illnesses, or to quickly screen existing medicines for new applications. Researchers reporting in ACS Central Science have used one such deep learning algorithm, and found that dihydroartemisinin (DHA), an antimalarial drug and derivative of a traditional Chinese medicine, could treat osteoporosis as well. The team showed that in mice, DHA effectively reversed osteoporosis-related bone loss.
A novel therapeutic approach that combines human epidermal growth receptor factor 2 (HER2)-targeted therapies with the cholesterol-lowering drug lovastatin can reduce the number of cancer treatments required to prevent tumor growth. Monitored by immuno-PET scans, this combination therapy has the potential to personalize treatment for cancer patients and spare them from harmful side effects. This research was published in the October issue of The Journal of Nuclear Medicine.
Liquid biopsies are blood tests that can serially measure circulating tumor DNA (cell-free DNA that is shed into the bloodstream by dying cancer cells). When used in patients with advanced non-small cell lung cancer undergoing immunotherapy, they may identify patients who could benefit from treatment with additional drugs, according to a phase 2 clinical trial in the U.S. and Canada.
A University of Massachusetts Amherst team has demonstrated in theory that a protein antigen from a childhood vaccine can be delivered into the cells of a malignant tumor to refocus the body’s immune system against the cancer, effectively halting it and preventing its recurrence.
The bacteria-based intracellular delivering (ID) system uses a non-toxic form of Salmonella that releases a drug, in this case a vaccine antigen, after it’s inside a solid-tumor cancer cell.
A new combination of treatments safely decreased growth of pancreatic cancer in mice by preventing cancer cells from scavenging for fuel, a new study finds.
A new, bio-inspired drug restores the effectiveness of immune cells in fighting cancer, a team led by researchers at The University of Texas at Austin has found. In mouse models of melanoma, bladder cancer, leukemia and colon cancer, the drug slows the growth of tumors, extends lifespan and boosts the efficacy of immunotherapy. The research is published in the journal Cancer Cell and could be a game changer for many cancer patients.
Since the discovery of penicillin in 1928, bacteria have evolved numerous ways to evade or outright ignore the effects of antibiotics. Thankfully, healthcare providers have an arsenal of infrequently used antibiotics that are still effective against otherwise resistant strains of bacteria.
An individual diagnosed with type 2 diabetes at age 30 years could see their life expectancy fall by as much as 14 years, an international team of researchers has warned.
Even people who do not develop the condition until later in life – with a diagnosis at age 50 years – could see their life expectancy fall by up to six years, an analysis of data from 19 high-income countries found.
Associate Professor at the University of Oulu Teemu Myllylä, a leading expert in biomedical engineering, recently discussed his team’s groundbreaking work in brain health monitoring and early detection of neurodegenerative diseases at the recent 6G-enabled sustainable society event. Their research focuses on wearable technologies and direct sensing techniques for neurohydrodynamics, which have the potential to revolutionise the early diagnosis and treatment monitoring of Alzheimer’s disease.