AUGUST 2015 ARTICLE LIST >>
PharmaTutor (August- 2015)
Print-ISSN: 2394 - 6679
e-ISSN: 2347 - 7881
(Volume 3, Issue 8)
Received On: 05/04/2015; Accepted On: 13/04/2015; Published On: 01/08/2015
AUTHORS: Bikash Debnath*, Md. JashimUddin, Debasish Maiti
State Biotech Hub, Department of Human Physiology,
Tripura University, Suryamaninagar.
*bikashrips2014@gmail.com
ABSTRACT: Central nervous system (CNS) drug development will be biology driven. Due to absence of functional platform for CNS drug targeting since, the large molecules pharmaceuticals cannot be delivered to brain. About 1.5 billion people worldwide are suffering from various type of central nervous system (CNS) disorders. Overcome to this problem modern pharmaceutical technology manufacturing the nonaparticles. Properly use of nonamedicines (nanoparticles) is one of the ways to control the CNS disorder in all over world. Nanoparticles are particles between 1 to 100 nm in size. Using nanotechnology it is possible to deliver the drug to the specific site of the tissue across the Blood -Brain Barrier (BBB). Various types of nanoparticle are available for treatment of CNS disorders. These are lipid based nanoparticles, solid lipid nanoparticles, polymer-based nanoparticles etc.
How to cite this article: B Debnath, Md. JashimUddin, D Maiti; Nanoparticle (NP) as a Targeting Drug Delivery System to Blood-Brain Barrier (BBB): A Review; PharmaTutor; 2015; 3(8); 30-37
[ABSTRACT WITH CITATION] [VIEW AS HTML]
REFERENCES:
1. Mohanraj V.J. and Chen Y; Nanoparticles – A review; Tropical Journal of Pharmaceutical Reaearch; 2006; 5(1); 561–573.
2. Haibin L. and Xuechen D; Nanoparticles for drug delivery to the central nervous system; Nanoscience Reviews; 2006; 11; 207–209.
3. Malhotra M. And Prakash S; Targeted drug delivery across blood–brain barrier using cell penetrating peptides tagged nanoparticles; Current Nanoscience; 2009; 7; 81–93.
4. Schlosshauer B; The blood–brain barrier: morphology, molecules, and neurothelin; Bioassays; 1993; 1; 341–346.
5. Butte A.M. and Jones H.C; Abbot N.J.; Electrical resistance across the blood-brain barrier in anaesthetized rats a Developmental Study; J. Physiol; 1990; 429; 47–62.
6. Roney C., Kulkarni P., Arora V., Antich P., Bonte F., Wu A., Mllikarkuana N.N., Manohars, Ziang H-F., Kulkarni A.R., Sung H-W., Malladi S. and Aminabhavi T.M; Targeted nanoparticles for drug delivery through the blood–brain barrier for Alzheimer’s disease; Journal of Controlled Relase; 2005; 108; 193–214.
7. Bernacki J., Dobrowolska A., NierwinskaK. And Ma?ecki A; Physiology and pharmacological role of the blood–brain barrier; Pharmacol. Rep; 2008; 60 (5); 600–622.
8. Haque S., Md S., Alam M.I., Sahni J.K., Ali J. and Baboota S; Nanostructure based drug delivery systems for brain targeting. Drug Development and Industrial Pharmacy; 2012; 38(4); 387–411.
9. Birst R.; Brain drug delivery system: A comprehensive review on recent experimental and clinical finding; International Journal of Pharmaceutical Sciences and Research; 2011; 2(4); 792–806.
10. Pardridge W.M; Blood–brain barrier delivery; Drug Discov.Today; 2007; 12(1/2); 54–61.
11. Gregoriadis G; Liposome research in drug delivery: the early days. Journal of Drug Targeting; 2008; 16( 7–8); 520–524.
12. Nabel G.J., Nabel E.C., Yang Z.Y., et al; Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans; Proceedings of the National Academy of Sciences of the United States of America; 1993; 90(23); 11307–11311.
13. Budai M. and Szogyi M; Liposomes as drug carrier systems: preparation, classification and therapeutical advantages of liposomes; Acta Pharmaceutical Hungarica; 2001; 71(1); 114–118.
14. Ishii T., Asai T., Oyama D., Agata Y., Yasuda N., Fukuta T., Simizu K., Minamino T and Oku N; Treatment of cerebral ischemia–reperfusion injury with PEGylated liposomes encapsulating FK506; FASEB Journal; 2013; 27(4); 1362–1370.
15. Shehata T., Ogawara K., Higaki K. and Kimura T; Prolongation of Residence Time of Liposome by Surface-Modification with Mixture of Hydrophilic polymers; Int J. Pharm; 2008; 359; 272–279.
16. Hwang, Seung Rim; Kim, Kwangmeyung. Nano-enableddelivery systems across the blood-brain barrier; Archives of PharmacalResearch; 2013; 1–7.
17. Gupta M. And Sharma V; Targeted drug delivery system: A review. Res. J. Chem. Sci; 2011; 1(2).
18. Kaur I.P., Bhandari R., Bhandari S., and Kakkar V; Potential of solid lipid nanoparticles in brain targeting; Journal of Controlled Release; 2008; 127(2); 97–109.
19. Mori N.M., Sheth N.R., Mendapara V.P., Ashara K.C. and Paun J.S; SLS brain targeting drug delivery for CNS: A novel approach; Int. Res. J. Pharm; 2014; 5(9).
20. Aminabhavi T.T.M., Soppimath K.S., Kulkarni A.R. and RudzinskiW.E; Biodebradable polymeric nanoparticles as drug delivery devices; J. Control. Release; 2001; 70; 1– 20.
21. Gubha S. and Mandal B; Dispersion polymerization of acrylamide; J. Colloid Interface Sci; 2004; 271; 55– 59.
22. Zambaux M., Bonneaux F., Gref R., Maincent P., Dellacherie E., Alonso M., Labrude P. and Vigernon C.; Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by double emulsion method; J. Control.Release; 1998;50; 31– 40.
23. Chen Y., Dalwadi G. and Benson H.A.E; Drug delivery across the blood– brain barrier; Cur.Drug Deliv; 2004; 361–376.
24. Neha M D., Pranav B P., Anita P A. and Vilasrau J K; Polymeric micelles as a drug carrier for tumor targeting; Chronicles of Young Scientists; 2013; 4(2):94-102.
25. google image.com.
26. Xu L., Zhang H. and Wu Y.; Dendrimer advances for the central nervous system delivery of therapeutics; Ass Chemical Neuroscience; 2014; 5; 2–13.
27. LeyuanXu., HaoZhang., and Yue Wu.; Dendrimer advances for the central nervous system delivery of therapeutics; Neurosciences; 2014; 5; 2-13.