AUG 2014 ARTICLE LIST >>
PharmaTutor (August- 2014)
ISSN: 2347 - 7881
(Volume 2, Issue 8)
Received On: 29/05/2014; Accepted On: 03/06/2014; Published On: 01/08/2014
AUTHORS: Manisha Gahlyan*, Saroj Jain
Department of Pharmaceutics,
Hindu college of pharmacy
Near Panchayat Bhawan, Gohana Road, Sonepat, Haryana
manishagahlyan@gmail.com
ABSTRACT:
Oral route has been the most popular and successfully route for controlled delivery of drugs because of the flexibility in the designing of dosage form than other routes. The immidiate release conventional dosage form lack in the efficiency of controlling the proper plasma drug concentration. This factor as well as factors such as repetitive dosing ++ and unpredictable absorption leads to the concept of oral controlled release drug delivery systems. A desirable characteristic of controlled release delivery system is that the duration of drug action should be dictated by the design property of drug molecules. There are different mechanistic aspects for design of oral controlled release drug delivery systems such as matrix, reservoir, osmotic pressure, ion exchange resins, altered density etc. This article contains brief review on currently existing oral controlled system and various formulation approaches for the controlled release system.
How to cite this article: M Gahlyan, S Jain; Oral Controlled Release Drug Delivery System- A Review; PharmaTutor; 2014; 2(8); 170-178
[ABSTRACT WITH CITATION] [VIEW AS HTML]
REFERENCES:
1.Brahmankar DM, Jaiswal SB. Biopharmaceutics and Pharmacokinetics: Pharmacokinetics. 2nd ed. Vallabh Prakashan, Delhi: 2009; 399-401.
2.John C, Morten C, The Science of Dosage Form Design, Aulton: Modified release peroral dosage forms. 2nd ed. Churchill Livingstone. 2002; 290-300.
3.Lee VHL. Controlled Drug Delivery Fundamentals and Applications: Influence of drug properties on design. 2nd ed. Marcel Dekker, Inc. New York: 1987; 16-25.
4.Modi Kushal, Modi Monali, Mishra Durgavati, Panchal Mittal, Sorathiya Umesh, Shelat Pragna. Oral controlled release drug delivery system: An overview. Int. Res. J. Pharm. 2013; 4(3):70-76.
5.Vyas SP, Khar RK. Controlled drug delivery: Concepts and Advances. 1st ed. Vallabh prakashan; 2002; 156-189.
6.Y.W. Chien. Novel drug delivery system. Volume 50.
7.Allen LV, Popvich GN, Ansel HC. Ansel’s Pharmaceutical dosage form and drug delivery system. 8th ed. 2004; 260-263.
8.Patrick JS. Martin’s Physical Pharmacy and Pharmaceutical Sciences. 3rd ed. Varghese Publishing House. Bombay: 1991; 512-519.
9.Kar RK, Mohapatra S, Barik BB. Design and characterization of controlled release matrix tablets of Zidovudin. Asian J Pharm Cli Res. 2009; 2:54-6
10.Lachaman L, Liberman HA, Kanig JL.The theory and practice of industrial pharmacy. 3rd ed. Bombay: Varghese publishing house 1987.
11.Jain NK. Controlled and novel drug delivery. CBS publisher and distribution. 1997; 1-25.
12.Venkataraman DSN, Chester A, Kliener L. An overview of controlled release system. Handbook of pharmaceutical controlled release technology. Marcel Dekker Inc. 2000; 1-30.
13.Mamidala R, Ramana V, Lingam M, Gannu R, Rao MY. Review article factors influencing the design and performance of oral sustained/controlled release dosage form. Int. journal of pharmaceutical science and nanotechnology. 2009; 2:583.
14.Gupta S, Singh RP, Sharma R, Kalyanwat R, Lokwani P. Osmotic pumps: A review. Int. journal of comprehensive pharmacy. 2011; 6:1-8.
15.Robinson JR, Lee VH. Controlled drug delivery. 2nd ed. Marcel Dekker, 1987; 4-15.
16. Kamboj S, Gupta GD. Matrix Tablets: An important tool for oral controlled release dosage form. Pharmainfo. Net. 2009; 7:1-9.
17.Bechgaard H, Nielson GH. Controlled release multiple units and single unit dosage. Drug Dev.and Ind. Pharm. 1978; 4:53-67. dx.doi.org/10.3109/03639047809055639
18.Wise DL. Handbook of pharmaceutical controlled release technology. Marcel Dekker Inc. New York: 2002; 432-460.
19.Tripathi KD. Essentials of Medical pharmacology. 5th ed. New Delhi: Jaypee Brothers Medical Publishers (P) Ltd; 2003.
20.Gibaldi M. Biopharmaceutics and clinical pharmacokinetics. 3rd ed. Philadelphia: Lea & Febiger; 1984.
21.Heilmann K. Therapeutics systems rate controlled drug delivery: Concept and Development. 2nd ed. Stuttgart Georg Thieme Verlag; 1984.
22.Conaghey OM, Corish J, Corrigan OI. Iontophoretically assisted in vitro membrane transport of nicotine from a hydrogel containing ion exchange resin. Int.J. Pharm. 1998; 170-225. dx.doi.org/10.1016/s0378-5173(98)00144-6
23.Mahore JG, Wadher J, Umekar MJ, Bhoyar PK. Ion exchange resins: Pharmaceutical application and recent advancement. Int. J. Pharm.Sci. Rev. Res. 2010; 1(2): 8-13.
24.Javed Ali, RK Khar, Alka Ahuja. Dosage form design. 4th ed. Birla Publication Pvt. Ltd; 2009; 181-194.
25.Cristina M, Aranzazu Z, Jose ML. Review: Critical factors in the release of drugs from sustained release hydrophilic matrices. Int. journal of Research in Ayurveda and Pharmacy. 2011; 21: 1701-08.
26.Herbig SM, Cardial JR, Korsmeyer RW, Smith KL. Asymmetric membrane tablet coating for osmotic drug delivery. J. Control. Release. 1995; 35:127-136. dx.doi.org/10.1016/0168-3659(95)00028-7
27.Gupta RN, Gupta R, Basniwal PK, Rathore GS. Osmotically controlled oral drug delivery systems; A Review. Int. J. Pharm. Sci. 2009: 1(2): 75-269.
28.Wagnaer JG. Biopharmaceutics and pharmacokinetics. Org. Intelligence Publisher; 1971: 57-148.
29.Srikanth MV,Sunil SA, Rao NS, Uhumwangho MU, Ramana Murthy KV. Ion exchange resins as controlled drug delivery carriers. J. Sci. Res. 2010; 2(3): 11-597.
30.Ballard BE. Sustained and controlled release drug delivery system. USA: Marcel Dekker Inc. 1978; 76-106.