Skip to main content

New Genome Editing Technology to Treat Blood Cancer

academics

 

Clinical research courses

Australian researchers have developed a new genome editing technology that can target and kill blood cancer cells with high accuracy. Using the technology, researchers from the Walter and Eliza Hall Institute were able to kill human lymphoma cells by locating and deleting an essential gene for cancer cell survival.

The research, published in the journal Cell Reports, provides a 'proof of concept' for using the technology as a direct treatment for human diseases arising from genetic 'errors'. Researchers adapted the technology, called CRISPR, to specifically mimic and study blood cancers.

Dr Brandon Aubrey, who is also a haematologist at The Royal Melbourne Hospital, said the team used the CRISPR technology to target and directly manipulate genes in blood cancer cells. "Using preclinical models, we were able to kill human Burkitt lymphoma cells by deleting MCL-1, a gene that has been shown to keep cancer cells alive," he said.

"Our study showed that the CRISPR technology can directly kill cancer cells by targeting factors that are essential for their survival and growth. As a clinician, it is very exciting to see the prospect of new technology that could in the future provide new treatment options for cancer patients," said Aubrey. The CRISPR/Cas9 system works by efficiently locating and targeting particular genes of interest in the whole genome. It can either target the gene to introduce mutations that make the gene non-functional, or introduce changes that make mutated genes function normally again.

Dr Marco Herold said pharmaceutical companies around the world were already investing millions of dollars to develop CRISPR as a tool for treating genetic diseases such as cancer.

"There is a lot of excitement and a significant amount of resources being invested worldwide to use CRISPR technology for treating patients," Herold said. "The technology can directly target any gene in the person's genome, therefore overcoming many common drug development problems," said Herold. "In our study, we showed for the first time that it is possible for CRISPR technology to be used in cancer therapy, however CRISPR is a unique approach that could potentially be used for treating any disease that is caused by genetic mutations," Herold added. PTI


<< Pharma News

Subscribe to PharmaTutor News Alerts by Email >>