Skip to main content

Aspirin’s Mechanism Holds Key to Develop many drugs

 

 

academics

 

Clinical research courses

A key mechanism of aspirin may explain many of the drug's therapeutic properties, revealed a new study. The study appeared in the Journal Molecular Medicine.

Researchers at the Boyce Thompson Institute (BTI), in collaboration with colleagues at Rutgers University and San Raffaele University and Research Institute have found that salicylic acid targets the activities of HMGB1, an inflammatory protein associated with a wide variety of diseases, offering hope that more powerful aspirin-like drugs may be developed.  A recent study shows that aspirin's main breakdown product, salicylic acid, blocks HMGB1, which may explain many of the drug's therapeutic properties.

This protein, HMGB1, is associated with many prevalent, devastating diseases in humans, including rheumatoid arthritis, heart disease, sepsis and inflammation-associated cancers, such as colorectal cancer and mesothelioma, said Daniel Klessig, senior author.

Aspirin's pain relieving effects have long been attributed to its ability to block the enzymes cyclooxygenase 1 and 2, which produce prostaglandins, hormone-like compounds that cause inflammation and pain, a discovery that netted its discoverer, John Vane, a Nobel prize. However, the body rapidly converts aspirin to salicylic acid, which is a much less effective inhibitor of cyclooxygenase 1 and 2 than aspirin. Nonetheless, it has similar pharmacological effects as aspirin, suggesting that salicylic acid may interact with additional proteins.

Researchers discovered the interaction between salicylic acid and HMGB1 by screening extracts prepared from human tissue culture cells to find proteins that could bind to salicylic acid. They identified one of these proteins as HMGB1. These screens have also identified a key suspect in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, plus approximately two dozen additional candidates that have yet to be characterized.


<< Pharma News

Subscribe to PharmaTutor News Alerts by Email >>