SEPTEMBER 2015 ARTICLE LIST >>
PharmaTutor (September- 2015)
Print-ISSN: 2394 - 6679
e-ISSN: 2347 - 7881
(Volume 3, Issue 9)
Received On: 06/05/2015; Accepted On: 17/05/2015; Published On: 01/09/2015
AUTHORS: Syed Saida begum*, B. Sai Sushmaa, S.Vijayaraja
Department of Pharmaceutical Analysis
Sree Vidyanikethan College of Pharmacy, Sree Sainath Nagar, A.Rangampeta, Tirupati, Chittoor (Dt), Andhra Pradesh.
msg2saida@gmail.com
ABSTRACT: The development of the bioanalytical techniques brought a progressive discipline for which the future holds many exciting opportunities to further improvement. The main impact of bionalysis in the pharmaceutical industry is to obtain a quantitative measure of the drug and its metabolites. The purpose is to perform the pharmacokinetics, toxicokinetics, bioequivalence and exposure response like pharmacokinetic/pharmacodynamic studies. Various bioanalytical techniques are performed in bioanalytical studies such as hyphenated techniques, chromatographic techniques, and ligand binding assays. This review extensively highlights the role of bioanalytical techniques and hyphenated instruments in assessing the bioanalysis of the drugs.
How to cite this article: SS Begum, BS Sushmaa, S Vijayaraja; Bioanalytical Techniques – An Overview; PharmaTutor; 2015; 3(9); 14-24
[ABSTRACT WITH CITATION] [VIEW AS HTML]
REFERENCES:
1) Matuszewski B K., Constanzer M L., and Chavez-Eng C M; Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS; Anal. Chem; 2003; 75 (13);3019-3030
2) Enke C G; Anal. Chem; f LC-MS Bioanalysis: Best Practices, Experimental Protocols; Anal. Chem; 1997; 69; 4885-4893
3) A.G. Rowley; Evaluating Uncertainty for Laboratories; A Practical Handbook; IJPQA; 2001; 4(3); 1-8
4) Vishwananthan C T., Bansal S., Booth B., Destefano A J., Rose M J., Sailstad J; Workshop/conference report-quantitative bioanalytical methods validation and implementation; best practices for chromatographic and ligand binding assays; AAPS J; 2007; 9(2); 117-121.
5) Sethi P D; HPLC quantitative analysis of pharmaceutical formulation; New Delhi: CBS Publication and Distributors; IJAPA; 3(4); 2001; 8-40.
6) Snyder L R., Kirkland J and J., Glajch J L; Practical HPLC Method Development; Wiley Interscience Publication, John Wiley & Sons; 1997; Issue no:2230-7885; 205-15.
7) Causon R; Application issues in bioanalytical method validation;sample analysis; J. Pharm. Sci; 1979;68; 237–238
8) Shrinagar naik K., Priyadarsdhi., and Tripathy; Standardization; ISO 9000:2000 Quality management systems— Fundamentals and vocabulary; 2008; 1; 1-10
9) Amirav A., Gordin A., Poliak M., Alon T., and Fialkov A. B; Gas Chromatography Mass Spectrometry with Supersonic Molecular Beams; Journal of Mass Spectrometry; 2008; 43(2); 141–163
10) Alon, T., and Amirav A; Isotope Abundance Analysis Method and Software for Improved Sample Identification with the Supersonic GC-M; Rapid Communications in Mass Spectrometry; IJPQA;2006; 20(17); 2579– 2588
11) Robert P., and Dr Adams; Identification of Essential Oil Components By Gas Chromatography/Mass Spectrometry; AJRC; 2008;2(4);380-387
12) Adlard E. R., Handley., and Alan J; Gas chromatographic techniques and applications; Sheffield Academic; IJPQA; 2001; 4(3); 2-16
13) Eugene F., Barry., Grob., and Robert Lee; Modern practice of gas chromatography.New York; Wiley- Interscience; IJPQA; 2004.4(3)1-10
14) Eiceman G.A; Gas Chromatography. In R.A. Meyers (Ed.); Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation,; Chichester: Wiley. ISBN 0-471-97670-9; 2000;1;10627
15) Kazakevich Y., and Lobrutto R; HPLC for Pharmaceutical Scientists; John Wiley & Sons, Inc: New Jersey; JPBMS; 2007; 1; 281-292
16) Said R; Application of New Technology LC-MS/MS for determination of therapeutic drugs, Doctoral degree thesis, Department of Medicine Division of Clinical Pharmacology Karolinska Institute, Stockholm, Sweden;IJCPCR; 2010;1;1-5
17) Thurman EM., and Mils MS; Solid Phase extraction: Principles and Practice. Chemical Analysis: A series of monographs on analytical chemistry and its applications; IJCPCR;2;1998; 147
18) Venn RF; a review on bioanalytical method development and. Validation by using lc-ms/ms; Principles and Practice of Bioanalysis;IJCPCR;2000;18;364
19) Shah VP; The History of Bioanalytical Method Validation and Regulation: Evolution of a Guidance Document on Bioanalytical Method Validation; AAPS J ; 2007; 9; E43-E47
20) Buick AR., Doig MV., Jeal SC., Land GS., and Mc Dowall RD; Method Validation in the Bioanalytical laboratory; J.Pharm BioMed Anal ; 1990; 8: 629-637.
21) Causon R; Validation of chromatographic methods in Bioanalytical analysis: View point and Discussion; J Chromatogr B Biomed Sci Appl ; 1997; 689; 175-180.
22) Rozet E., Marini RD., Ziemons E., Boulanger B., and Hubbert P; Advances in Validation, Risk and Uncertainty assessment; Bioanalytical method validation; J Pharm Biomed Anal; 2011; 55; 848-858.
23) evosciences.com/en/spectrometrie-de-masse/33-waters-xevo-tqs hclass.html
24) azom.com/equipment-details.aspx?EquipID=902
25) shimadzu.com/an/industry/foodbeverages/qn50420000001ua7-img/qn50420000002ffj.jpg
26) science.sjp.ac.lk/wp-content/uploads/2012/06/GC-MS_instrument_flatform.jpg
27) chem.agilent.com/en-US/products-services/Instruments-Systems/Automated-Electrophoresis/CE-MS-System/Pages/default.aspx