JUL 2014 ARTICLE LIST >>
PharmaTutor (July- 2014)
ISSN: 2347 - 7881
Received On: 17/05/2014; Accepted On: 22/05/2014; Published On: 01/07/2014
AUTHORS: *Abdulrhman. A. Akasha, Malak Ali Elwahedi, Areej Mohmoud Eldeeb
Department of Pharmaceutics, Faculty of Pharmacy,
Tripoli University, Libya.
*akashaabdu@yahoo.co.uk
ABSTRACT:
Cyclodextrins are formed by the action of cyclodextrin-trans-glycosidase enzyme (CTG) on the medium containing starch. Cyclodextrins are cyclic oligosaccharides containing at least six D-(+)- glucopyranose units attached by α (1-4) glucoside bonds. The three natural cyclodextrins, α , β and γ differ in their ring size and solubility.
One of the striking feature of cyclodextrins is their ability to form inclusion complexes with a variety of compounds, by entrapping their molecules (guest) inside the cyclodextrin cavity, which act as a host. Cyclodextrin complexing agent are often used, in pharmaceutical formulation of oral products, to increase the bioavailability of poorly water soluble or unstable drug. The simplified review presents the evaluation of cyclodextrins drug complexes in pharmaceutical formulation. The preparation of sodium valproate phenytoin sodium/ β-cyclodextrin inclusion complex in a trial to stabilize the drug against moisture absorption and forming non-hygroscopic powders which are suitable for tablets by direct compression was reviewed. The preparation of phenytoin sodium / β-cyclodextrin inclusion complex in a trial to stabilize the drug against moisture absorption and mask its bitter taste was reviewed.
The preparation of piroxicam/ β-cyclodextrin inclusion complexes is a exhibited higher dissolution rates and absorption efficiency values, than the corresponding un-complexes drug.
Cyclodextrins as complexing agents are often used in pharmaceutical formulation of oral products to increase the bioavailability of poorly water soluble or unstable drugs.
How to cite this article: AA Akasha, MA Elwahedi, AM Eldeeb; Cyclodextrins and their Pharmaceutical Applications; PharmaTutor; 2014; 2(7); 40-46
[ABSTRACT WITH CITATION] [VIEW AS HTML]
REFERENCES:
1. Menuel S, Joly JP, Courcot B, Elysée J, Ghermani NE, Marsua A, Synthesis and inclusion ability of a bis-β-cyclodextrin pseudo-cryptand towards Busulfan anticancer agent. J.tet, 2006; 67 (7) :1706-1714.
2. Thatiparti TR, Shoffstall AJ, von Recum, HA, Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials, 2010; 31: 2335-47.
3. O'Mahony AM1, Cronin MF, McMahon A, Evans JC, Daly K, Darcy R, O'Driscoll CM, Biophysical and structural characterisation of nucleic Acid complexes with modified cyclodextrins using circular dichroism. J Pharm Sci, 2014;103(5):1346-55.
4. Szejtli J, Cyclodextrin Technology. 1988; 1: 277-2314-7.
5. Dass CR, Jessup W, Apolipoprotien A-I. Cyclodextrine and liposomes as potential drugs for the reversal of atherosclerosis. J Pharm Pharmacol, 2000;52:731-61.
6. Hirayama Uekama FK, Cyclodextrins and their Industrial uses, D.Duchene, de Sante, Paris, 1981.
7. Szejtli, J, cyclodextrin technology, Kluwer Academic Publishers, Dordrecht 1988.8. Szejtli, J, cyclodextrins and their inclusion complexes Academiai Kiado, Budapest, 1982.
9. Irie T, Uekama K, Pharmaceutical applications of cyclodextrins and Toxicological issues and safety evaluation. J Pharm.Sci, 1997; 86 :147-62.
10.Thompson DO, Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit Rev Ther Drug Carrier Syst 1997;14:1-10416. Singh M, Sharma R, Banerjee UC . Biotechnol Adv 2002; 20:341-59 .
11. Szente L . Szejtli J, Kis GL, Spontaneous opalescence of aqueous ?-cyclodextrin solution :complex formation or self -aggregation. J Pharm.Sci,1998; 87:778-81.
12. Singh M, Sharma R, Banerjee UC. Adv.Biotechnol, 2002; 20:341-59
13. Stella VJ, Rajewski, RA, Cyclodextrins ; their function in drug formulation and delivery. pharm.Res, 1997;14:556-567.
14. Rajewski RA, stella VJ, Pharmaceutical applications of cyclodextrins, 2. In vivo drug delivery . J.pharm.Sci,1996; 85: 1142-1169.
15. Szente L, Szejtli J, Highly soluble cyclodextrin derivatives: chemistry , properties, and trends in development . Advanced Drug Delivery Reviews,1999; 36: 17.
16. Santil Kumaran K, Baskaran T, Moorthy MSR, Enhancement of bioavailability of griseofulvin by its complexation with beta-cyclodextrin. Drug, 1998;24: 583-587.
17. Paninia R, Vandelli MA, Forni F, Pradellia G, Salviolia, Improvenment of ursodeoxycholic acid bioavailability by 2-hydroxypropyl-beta-cyclodextrin complexation in healthy volunteers. pharmacol.Res. 1995; 31:205-209.
18. Otero-Espinar S, Anguiano-Igea NG, Gonzalez JL., roxen-b-cyclodextrin inclusion compound. Int. J. Pharm, 1991; 75:37-44.
19. Kedzierewicz C, Zinutti M, Hoffman P, Maincent, Bioavailability study of tolbutamide betacyclodextrin inclusion compounds, solid Bioavaliability study of tolbutamide b- cyclodextrin inclusion compounds, solid dispersions and bulk powder. Int.J.Pharm, 1993; 94:69-74.
20. Aghrbi E, Biopharmaceutical study of antiepileptic drugs. Thesis 2008.
21. Dolci G, Ripari M, Pacifici L, Umile A, Analgesic efficacy and the tolerance for piroxicam-β-cyclodextrin compared to piroxicam, paracetamol and placebo in the treatment of post-extraction dental pain. Int. J. Clin. Pharmacol. Res, 1994; 14(5-6):185-91.