

Review Article

Anti-Cancer (Novel Agents): A Review

V. Sravanthi, Mayure vijay kumar, G.J.Finny, C.P.Meher Department of pharmaceutical chemistry, Maheshwara College of Pharmacy Patancheru, Hyderabad, Andhra Pradesh. *v.sravanthi27@gmail.com

ABSTRACT

Cancer is a class of diseases characterized by out-of-control cell growth. Cancer cells damage the body by multiplying their cells uncontrollably to form masses of tissue named as tumor. Tumors cells can grow and interfere with the digestive, nervous, and circulatory systems, and they can release hormones that alter body function. Tumors that are severe to body are called cancerous tumors, and temporary cells that are affected to body are not harmful and called as benign tumors. Nearly 100's of cancers are known to be effecting the humans. According to this concern the presented review outlines the novel anticancer agents how they are useful, their mechanism, and chemistry has briefly discussed in this article, the main aim of these review is to evaluate the complete novel anticancer drugs under single review paper.

Keywords: Anti-Cancer, Chrmotherapy, malignant progression

INTRODUCTION

Cancer is the largest cause of death in the developed world. Cancer affects 1 in 3 people and is responsible for 25% of all deaths. Here are more than 100 different types of cancer. For example, lung cancer starts in the lung, and breast cancer starts in the breast. The spread of cancer from one part of the body to another is called metastasis.

PERCENTAGE	CAUSE
30% Smoking (lung, mouth,	
	pharynx,larynx,esophagus etc;)
15%	Viruses (papillomavirusetc;)

Six characteristics of malignancies have been proposed:

- self-sufficiency in growth signalling
- insensitivity to anti-growth signals
- evasion of apoptosis
- enabling of a limitless replicative potential
- induction and sustainment of angiogenesis
- activation of metastasis and invasion of

The progression from normal cells to cells that can form a discernible mass to outright cancer involves multiple steps known as malignant progression^[2]

SCHEME OF CANCER CAUSES ^[3]:

ADVANCES IN CANCER CHEMOTHERAPY^[3]: SURGERY: BEFORE 1955 RADIOTHERAPY: 1955-1965

How to cite this article: V Sravanthi, VK Mayure, GJ Finny, CP Meher; Anti-Cancer (Novel Agents): A Review; PharmaTutor; 2014; 2(8); 119-153

GENERAL MECHANISM OF ANTICANCER DRUGS ^[5]:

ANTICANCER AGENTS

	CYTOTOXIC AGENTS:				
ALKYLATING AGENTS:					
SNO	DRUG	MECHANISM	USES	REFERENCE	
1	BENDAMUSTINE : TREANDA	 p53-dependent activation of DNA damage stress response and apoptosis, inhibition of mitotic checkpoints, and induction of mitotic catastrophe.^[7] 	Chronic lymphocytic leukemia, Hodgkin's disease, non-Hodgkin's lymphoma, multiple myeloma and lung cancer ^[6]	Kath R, ^[6] Leoni LM, et al ^[7]	

-		13311. 2347-7001		
2	BUSULFAN : MYLERAN O OS OO $Obutane-1,4-diyldimethanesulfonateFormula: C6H14O6S2Mol. mass: 246.304 g/mol$	Results in the interference of DNA replication and RNA transcription, disruption of nucleic acid function undergoes apoptosis. ^[9]	-Chronic myeloid leukemia. -chronic myelogenous leukemia -lymphomas, myeloproliferative disorders. ^[8]	Lesurtel M, et al ^[8] Hall AG, et al
3	CARMUSTINE : BICNU CI N N I,3-Bis(2-chloroethyl)-1- nitrosourea Formula: $C_5H_9Cl_2N_3O_2$ Mol. mass: 214.05 g mol ⁻¹	Inhibition of DNA synthesis, RNA production and RNA translation. Carmustine also binds and modifies (carbamoylates) glutathione reductase. This leads to cell death. ^[11]	Glioma, glioblastoma multiforme, medullo blastoma and astrocytoma multiple myeloma lymphoma ^[10]	"Carmustine – et al ^[10] Drablos F, et al ^[11]
4	CHLORAMBUCIL : LEUKERAN CI HO 4-[bis(2- chlorethyl)amino]benzenebutano ic acid Formula: C ₁₄ H ₁₉ Cl ₂ NO ₂ Mol. mass: 304.212 g/mol	1) Preventing DNA Synthesis and RNA transcription from the affected DNA, 2) DNA damage 3) The induction of mispairing of the nucleotides leading to mutations. ^[13]	Non-Hodgkin lymphoma, Waldenström macroglobulinemia, polycythemia vera, trophoblastic neoplasms, ovarian carcinoma. ^[12]	Rai KR, et al ^[12] Begleiter A, et al ^[13]
5	CYCLOPHOSPHAMIDE : ENDOXAN CI CI CI CI CI CI CI CI CI CI	Mechanisms include: ^[14] Elimination of T regulatory cells (CD4+CD25+ T cells) Induction of T cell growth factors, such as type I IFNs, and/or	Numerous malignant processes and certain autoimmune diseases.	Sistigu A, et al ^[14]
6	DACARBAZINE : DTIC-DOME NH_2 NH_2 CH_3 $CH_$	The mechanism of action is not known, but appears to exert cytotoxic effects via its action as an alkylating agent. Other theories include DNA synthesis inhibition by its action as a purine analog, ^[16]	Metastatic melanoma Hodgkin lymphoma ^[15]	fass.se ^[15] Lonn U,et al ^[16]

	Mol. mass: 182.18g/mol			
7	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	The exact mechanism of ifosfamide has not been determined, but appears to be similar to other alkylating agents. The formation of inter and intra strand cross-links in the DNA results in cell death. ^{[18}	Testicular cancer, Lymphoma, Soft tissue sarcoma, Osteogenic sarcoma, Cervical cancer, Ovarian cancer ^[17]	Jahnke K, et al ^[17] Dechant KL, et al ^[18]
8	MELPHALAN : ALKERAN H_2 H_0 H_2 H_1 H_1 H_2 H_1	Forming mono adducts and resulting in the DNA being fragmented, preventing DNA synthesis and RNA transcription from the affected DNA, ^[20]	Multiple myeloma and Ovarian cancer, malignant melanoma. ^[19]	Facon T, et al ^[19] Vasquez KM: et al ^[20]
9	PROCARBAZINE : MATULANE H H H N-isopropyl-4-[(2- methylhydrazino)methyl]benzam ide Formula: C ₁₂ H ₁₉ N ₃ O Mol. mass: 221 299 g/mol	Its mechanism of action is not fully understood. Metabolism yields azo- procarbazine and hydrogen peroxide which results in the breaking of DNA strands. ^[21]	Hodgkin's lymphoma	"WHO Model List of EssentialMed icines". Et al
10	STREPTOZOCIN: ZANOSAR HOHO OH CHARACTERISTICS 2-Deoxy-2- ({[methyl(nitroso)amino]carbonyl }amino)- β -D-glucopyranose. Formula: C ₈ H ₁₅ N ₃ O ₇ Mol. mass: 265.221 g/mol TEMOZOLOMIDE : TFMODAR	DNA damage induces activation of poly ADP- ribosylation, which is likely more important for diabetes induction than DNA damage itself. ^[3]	Metastatic cancer Oligodendroglioma	Szkudelski T et al ^[22] Malcolm
11	TEMOZOLOWIDE . TEMODAR	schedule-dependent anti- neoplastic activity by interfering with DNA replication. ^[24]	brain tumors. melanoma ^[23]	Stevens et al ^[23] Sitbon Sitruk,

$\begin{array}{ c c } \hline & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	
N N	
O ^{NH} 2	
4-methyl-5-oxo-2,3,4,6,8-	
pentazabicyclo[4.3.0]nona-2.7.9-	
triene-9-carboxamide	
Energy C H N O	
$\begin{array}{c} \text{Formula. } C_{6} H_{6} N_{6} O_{2} \\ \text{Mal. massar } 10.4.151 \text{ g/mal.} \end{array}$	
Moi. mass: 194.151 g/moi	
ANTI- METABOLITES:	
12 ASPARAGINASE : ELSPAR	
O NH2	
Aspargine- Industrial and "WHO M	odel
H2N $-\dot{C}$ -COOH \rightarrow aspartate \rightarrow aspargine pharmaceutical et al [21]	
synthatase aspargine purposes.	
H Synthatase / aspurgine .	
asparagine Asparging/ tumor coll-1	
E coli L-asparagine	
amidohydrolaso	
→aspargine (protein	
Formula: C ₁₃₇₇ H ₂₂₀₈ N ₃₈₂ O ₄₄₂ S ₁₇ synthesis)	
Mol. mass: 31/31.9 g/mol	
13 CAPECITABINE : XELODA Thymidylate synthase Colorectal cancer, "Xeloda	
HO OH inhibitor, hence inhibiting Oesophageal (capecital	bine
the synthesis of thymidine canceret al [25]
monophosphate (ThMP), Gastric cancer	
the active form of Breast cancer	
0 ^N N ^O N ^O thymidine which is required	
H for the de novo synthesis of	
pentyl [1-(3,4-dinydroxy-5-	
methyltetrahydrofuran-2-yl)-5-	
fluoro-2-oxo-1H-pyrimidin-4-	
yl]carbamate	
Formula: $C_{15}H_{22}FN_3O_6$	
Mol. mass: 359.35 g/mol	
14 CYTARABINE: CYTOSAR-U Inhibits both DNA ²⁷ and Acute myeloid Pigneux A	, et
NH ₂ RNA Polymerases and leukaemia, al [26]	
nucleotide reductase acute lymphocytic	
HO HO Perry	
synthesis [26] Michael &	t al
	ai
4-amino-1-[(2R,3S,4R,5R)-3,4-	
dihydroxy-5-	
/hudrousumenthul)ouologi 2 ull	
(nyaroxymetnyijoxolan-2-yij	
pyrimidin-2-one	
pyrimidin-2-one Formula: $C_9H_{13}N_3O_5$	

15				Deee: C. ed
15	5- FLUORO URACIL : ADRUCIL	Administration of 5-FU	Anal, breast, colore	ROSSI, S, ed.
		causes a scarcity in dTMP,	ctal, oesophageal, st	Et al ()
		so rapidly dividing	omach, pancreatic	
	ни́ / мн	cancerous cells undergo cell	and skin cancers ^[20]	
	Ĭ	death via thymineless death.		Longley DB,
	5-fluoro-1H 3H-pyrimidine-2 4-			et al
	dione			
	Formula: C.H.FN.O.			
	Mol mass: 130 077 g/mol			
16		Fludarabine inhibits DNA	Hematological	Rai KR et al
10	NH2	synthesis by interfering	malignancies	[30]
	N	withribonucleotide	leukemias and	
		reductase and DNA	lymphomas	
		polymerase. It is active	lymphomas	
	он но	against both dividing and		
	OH	resting cells.		
	[(2R.3R.4S.5R)-5-(6-amino-2-			
	fluoro-purin-9-vl)- 3.4-dihvdroxy-			
	oxolan-2-vl]methoxyphosphonic			
	acid			
	Formula: C10H12FN=O7P			
	Mol. mass: 365.212 g/mol			
17	GEMCITABINE : GEMZAR	The process arrests tumor	Carcinomas: non-	N. M. F. S. A.
	NH ₂	growth.	small cell lung	[31]
		gemcitabine is the	cancer,	
		enzyme ribonucleotide	pancreatic cancer,	
		reductase (RNR). The	bladder cancer and	
		diphosphate analogue binds	breast cancer.	
	ÓН É	to RNR active site and		
	4-amino-1-(2-deoxy-2,2-difluoro-	inactivates the enzyme		
	β-D-erythro-	irreversibly. Once RNR is		
	pentofuranosyl)pyrimidin-2(1H)-	inhibited, the cell cannot		
	on	produce the deoxy		
	Formula: $C_9H_{11}F_2N_3O_4$	ribonucleotides required for		
	Mol. mass: 263.198 g/mol	DNA replication and repair,		
		and cell apoptosis is		
		induced.		
18	METHOTREXATE : MTX	It is an inhibitor of	Neoplastic	U.S. National
		tetrahydrofolate	Diseases,	Library of
		dehydrogenase and	Psoriasis	Medicine, ^{132]}
	NH ₂	prevents the formation of	Rheumatoid	
	Ö	tetrahydrofolate, necessary	Arthritis	
	остон	for synthesis of thymidylate,		
	N-(4-{[(2,4-Diamino-6-	an essential component of		
	pteridinyl)methyl](methyl)amino}b	DNA.		
	enzoyl)-L-glutamic acid			
	Formula: $C_{20}H_{22}N_8O_5$			
	Mol. mass: 454.439301 Da			

19	PEMETREXED: ALIMTA			
	$(2S)-2-\{[4-[2-(2-amino-4-oxo-1,7-dihydro pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]amino\}$ pentanedioic acid Formula: $C_{20}H_{21}N_5O_6$ Mol. mass: 427.411 g/mol	Pemetrexed prevents the formation of DNA andRNA, which are required for the growth and survival of both normal cells and cancer cells. ^[33]	Malignant Pleural Mesothelioma[^{34]}	McLeod, et al ^[33] Manegold C et al ^[34]
20	RALTITREXED : TDX $f(5-\{methy [(2-methy -4-oxo-1,4-dihydroquinazolin-6-yl])methyl]amino\}-2-thienyl]carbonyl]-L-glutamic acid Formula: C21H22N4O6S Mol. mass: 458.489 g/mol$	Raltitrexed prevents the formation of DNA and RNA, which are required for the growth and survival of both normal cells and cancer cells. Inhibition of L1210 cell growth in culture $IC_{50} = 9$ nM, is one of the strongestantimetabolites in use.	malignant mesothelioma	Widemann BC, et al ^[35]
	Α	NTI-TUMOUR ANTIBIOTICS:		I
	: COSMEGEN	Inhibit transcription. Actinomycin D binding DNA at the transcription initiation	Gestational trophoblastic neoplasia Wilms' tumor Rhabdomyosarcom a Ewing's carcoma	Sobell H- et al , Uberti, E. M. H et al ^[36-41]
	$\label{eq:constraint} \begin{array}{l} \downarrow \downarrow$	elongation of RNA chain by RNA polymerase.	Malignant hydatidif orm mole ^[36-41]	

22	BLEOMYCIN : BLENOXANE			
	BLEOWINCIA - BLENOVAINE $H_{N} + \int_{H_{1}} H_{1} + \int_{H_{2}} H_{$	Bleomycin may bind at specific sites in the DNA strand and induce scission by abstracting the hydrogen atom from the base, resulting in strand cleavage as the base undergoes a Criegee-type rearrangement, or forms an alkali-labile lesion. ^[42-44]	Hodgkin's lymphoma, plantar warts pleurodesis ^[42-44]	Lewis, TG et al - Hecht, e tal ^[42-44]
23	DAUNORUBICIN : CERUBIDINE $\begin{aligned} & \qquad \qquad$	Binds to every 3 base pairs and induces a local unwinding angle of 11°, but negligible distortion of helical conformation. It can also induce histone eviction from chromatin upon interc alation. ^[45-46]	Neuroblastoma, chronic myelogenous leukemia.	G J Quigley, et al - Pang B, et al ^[45-46]
24	DOXORUBICIN : ADRIAMYCIN			

	(7S,9S)-7-[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-9-(2-hydroxyacetyl)-4-methoxy-8,10-dihydro-7H-tetracene-5,12-dioneFormula: C27H29NO11Mol. mass: 543.52 g/mol	Induce histone eviction from chromatin. As a result, DNA damage response, epigenome and tr anscriptome are deregulated in doxorubicin- exposed cells. ^[48]	leukemias and Hod gkin's lymphoma, as well as cancers of the bladder, breast, stomach, lung, ovaries, thyroid, soft tissue sarcoma, multiple myeloma, [47]	Brayfield, A, et al ^[47] Pang B, et al ^[48]
25	EPIRUBICIN: ELLENCE $\downarrow \qquad \qquad$	Acts by intercalating DNA strands . Intercalation results in complex formation which inhibits DNA and RNA synthesis. It also triggers DNA cleavage by topoisomerase II, resulting in mechanisms that lead to cell death.	Breast and ovarian cancer, gastric cancer, lung cancer and lymphomas.	Bonfante, V; et al ^[49]
26	IDARUBICIN : ZAVEDOS idealized for the second se	Prevents DNA from unwinding by interfering with the enzyme topoisomerase II. It also induces histoneeviction from chromatin.	Acute myeloid leukemia.	Pang B,et al
27	MITOMYCIN : MITOMYCIN C	Mitomycin C is a potent DNA crosslinker chemotherapeutic agent in glaucoma surgery. ^[51-52]	Esophageal carcinoma bladder tumours anal cancers, and breast cancers	Tomasz, et al

	_			
				Renault, et al
				[52]
	H ₂ N			
	0 0			
	H ₂ N			
	{11-Amino-7-methoxy-12-methyl-			
	10.13-dioxo-2.5-			
	diazatetracyclo $[7400^{2,7}0^{4,6}]$ tride			
	ca-1(9) 11-dien-8-yl}methyl			
	carbamate			
	Formula: CHN.O.			
	Mol mass: $334.33 \text{ g mol}^{-1}$			
20		Mitovantrono is a	Motostatic	
20	H	type II topoisomoroso	broast cancor	
		inhibitor	preast cancer,	
		infilbitor;		Darkar C at al
		it disrupts DNA		[53]
		synthesis and DNA repair in	hon-Hougkin's	
		both healthy cells and	iympnoma *	
	H 1.4 dibudrovy E.8 bic[2/2	cancer cells,		
	1,4-ulliyuloxy-5,8-bis[2-(2-	by intercalation.		
	athylaminal anthracana 0.10	between the DNA bases.		Mazerski J, et
	diana			al
	Formula: $C_{22}\Pi_{28}\Pi_4 O_6$			
	Mol. mass: 444.481 g/mol			
20		ALOIDS/ MICROTUBULE INHIB	TORS:	Hando
29	PLANT ALK ETOPOSIDE : ETOPOPHOS	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the	TORS: Kaposi's sarcoma,	Hande
29	PLANT ALK	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing	ITORS: Kaposi's sarcoma, Ewing's sarcoma,	Hande KR et al ^[55-57]
29	ETOPOSIDE : ETOPOPHOS	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, toticular cancer	Hande KR et al ^[55-57]
29	ETOPOSIDE : ETOPOPHOS	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer,	Hande KR et al ^[55-57]
29	ETOPOSIDE : ETOPOPHOS	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma,	Hande KR et al ^[55-57]
29	PLANT ALK	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide generating	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu	Hande KR et al ^[55-57]
29	PLANT ALK ETOPOSIDE : ETOPOPHOS	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly.	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia,	Hande KR et al ^[55-57]
29	PLANT ALK ETOPOSIDE : ETOPOPHOS	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma	Hande KR et al ^[55-57]
29	PLANT ALK ETOPOSIDE : ETOPOPHOS HO HINT HO HO HINT HINT HO HO HINT HINT HO HO HINT HO HINT	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme.	Hande KR et al ^[55-57]
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS HO HO HO HO HO HO HO HO HO HO	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme.	Hande KR et al ^[55-57]
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS HO H H H H H H H H H H H H H H H H H H	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the cancer cell.	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme.	Hande KR et al ^[55-57]
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS HO + H + H + H + H + H + H + H + H + H +	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the cancer cell.	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme.	Hande KR et al ^[55-57]
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS H^{O} H^{H	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the cancer cell.	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme.	Hande KR et al ^[55-57]
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS H^{O} H^{H	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the cancer cell.	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme.	Hande KR et al ^[55-57]
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS HO + H + HO + H + HO + H + HO + H + HO + H + H	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the cancer cell.	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme.	Hande KR et al ^[55-57]
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS HO HO HO HO HO HO HO HO HO HO	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the cancer cell. Binding stabilizes	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme. Breast, colorectal,	Hande KR et al ^[55-57] Lyseng-et al
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS HO HO HO HO HO HO HO HO HO HO	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the cancer cell. Binding stabilizes microtubules and prevents	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme. Breast, colorectal, lung,	Hande KR et al ^[55-57] Lyseng-et al
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS H^{O} H^{H	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the cancer cell. Binding stabilizes microtubules and prevents depolymerisation from	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme. Breast, colorectal, lung, ovarian, prostate,	Hande KR et al ^[55-57] Lyseng-et al
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS H^{O} H^{H	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the cancer cell. Binding stabilizes microtubules and prevents depolymerisation from calcium ions, decreased	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme. Breast, colorectal, lung, ovarian, prostate, liver,	Hande KR et al ^[55-57] Lyseng-et al
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS H^{O} H^{H	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the cancer cell. Binding stabilizes microtubules and prevents depolymerisation from calcium ions, decreased temperature and dilution,	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme. Breast, colorectal, lung, ovarian, prostate, liver, renal,	Hande KR et al ^[55-57] Lyseng-et al
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS H^{O} H^{H	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the cancer cell. Binding stabilizes microtubules and prevents depolymerisation from calcium ions, decreased temperature and dilution, preferentially at the plus	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme. Breast, colorectal, lung, ovarian, prostate, liver, renal, gastric, head and	Hande KR et al ^[55-57] Lyseng-et al ^[58]
29	Mol. mass: 444.481 g/mol PLANT ALK ETOPOSIDE : ETOPOPHOS $H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H_{H$	ALOIDS/ MICROTUBULE INHIB Prevents re-ligation of the DNA strands, and by doing so causes DNA strands to break. Cancer cells rely on this enzyme more than healthy cells, since they divide more rapidly. Therefore, this causes errors in DNA synthesis and promotes apoptosis of the cancer cell. Binding stabilizes microtubules and prevents depolymerisation from calcium ions, decreased temperature and dilution, preferentially at the plus end of the microtubule.	TORS: Kaposi's sarcoma, Ewing's sarcoma, lung cancer, testicular cancer, lymphoma, nonlymphocytic leu kemia, and glioblastoma multiforme. Breast, colorectal, lung, ovarian, prostate, liver, renal, gastric, head and neck cancers,	Hande KR et al ^[55-57] Lyseng-et al ^[58] Yvon AM, et al ^[59]

		155N: 254/-/001		
	1,7β,10β-trihydroxy-9-oxo-5β,20- epoxytax-11-ene-2α,4,13α-triyl 4-	lead to the phosphorylation of oncoprotein bcl-2, which		
	acetate 2-benzoate 13-{(2R,3S)-3-	is apoptosis-blocking in its		
	[(tert-butoxycarbonyl)amino]-2-	oncoprotein form ^[59]		
	hydroxy-3-phenylpropanoate			
	Formula: $C_{43}H_{53}NO_{14}$			
	Mol. mass: 807.879 g/mol			
31	IRINOTECAN : CAMPTOSAR	Irinotecan prevents DNA from unwinding by inhibition of topoisomerase The inhibition of topoisomerase I by the active metabolite SN-38 eventually leads to	colon cancer	Pommier, Y., et al ^[60]
	(S)-4,11-diethyl-3,4,12,14- tetrahydro-4-hydroxy- 3,14-dioxo1H-pyrano[3',4':6,7]- indolizino[1,2-b]quinolin- 9-yl-[1,4'bipiperidine]-1'- carboxylate Formula: $C_{33}H_{38}N_4O_6$	inhibition of both DNA replication and transcription.		
	Mol. mass: 586.678 g/mol			
32	PACLITAXEL : TAXOL f = 0 f = 0	Inhibit spindle function is generally attributed to its suppression of microtubule dynamics, Paclitaxel appears to suppress microtubule detachment from centrosomes, a process normally activated during mitosis. Paclitaxel binds to beta- tubulin subunits of microtubules.	Kaposi's sarcoma ovarian cancer.	Jordan et al ^[61-63]
	(S)-10-[(dimethylamino)methyl]-4- ethyl-4,9- dihydroxy-1H-	between DNA bases. This intercalation disrupts the DNA duplication machinery when it reaches a site where topotecan is intercalated. This disruption prevents DNA replication, and ultimately leads to cell	Cervical cancer Small cell lung cancer Neuroblastoma Brainstem glioma Ewing's sarcoma	al ^[64]

		15511.2547-7001		r
	pyrano[3',4':6,7]indolizino[1,2-b]	death.		
	quinoline-3,14(4H,12H)-dione			
	monohydrochloride			
	Formula: $C_{23}H_{23}N_3O_5$			
	Mol. mass: 457.9 g/mol			
34	VINBLASTINE	Produce microtubule	Hodgkin's	
		fragments by stimulating	lymphoma, non-	
		microtubule minus-end	small cell lung	
		detachment from their	cancer,breast	
		organizing centers. Dose-	cancer, head and	
		response studies further	neck cancer,	Yang H·etal
		indicate that enhanced	and testicular	[65]
	0. × N H / 0	microtubule detachment	cancer.	
	dimethyl (2 β ,3 β ,4 β ,5 α ,12 β ,19 α)-	from spindle poles correlate		
	15-[(5S,9S)-5-ethyl-5-hydroxy-9-	best with cytotoxicity.		
	(methoxycarbonyl)-			
	1,4,5,6,7,8,9,10-octahydro-2H-3,7-			
	methanoazacycloundecino[5,4-			
	b]indol- 9-yl]-3-hydroxy-16-			
	methoxy-1-methyl-6,7-			
	didehydroaspidospermidine-3,4-			
	dicarboxylate			
	Formula: $C_{46}H_{58}N_4O_9$			
	Mol. mass: 810.975 g/mol			
35	VINCRISTINE: ONCOVIN			
	HO			
	C N N			
		Vincristine binds		
		to tubulin dimers, inhibiting	Thrombotic	Brayfield, A,
	N OHO	assembly of microtubule	thrombocytopenic	et al
		structures and	purpura (TTP) or	
	(3aB 3a1B 4B 5S 5aB 10bB)-methyl	arresting mitosis in metapha	chronic	
	4-acetoxy-3a-ethyl-9-((55 75 95)-5-	se. Because vincristine's	idiopathic	
	ethyl-5-hydroxy-9-	mechanism of action targets	thrombocytopenic	
	(methoxycarbonyl)-	all rapidly dividing cell	purpura	
	2,4,5,6,7,8,9,10-octahvdro-1H-3.7-	cancerous cells but can also		
	methano[1]azacycloundecino[5.4-	affect the		
	b]indol-9-yl)-6-formyl-5-hydroxy-	intectinal enithelium and		
	8-methoxy-3a,3a1,4,5,5a,6,11,12-	hone marrow		
	octahydro-1H-indolizino[8,1-			
	cd]carbazole-5-carboxylate			
	Formula: $C_{46}H_{56}N_4O_{10}$			
	Mol. mass: 824.958 g/mol			
36	VINORELBINE : NAVELBINE			
1				

	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	Activity is due to inhibition of mitosis through interaction with tubulin.	Non-small-cell lung cancer and metastatic breast cancer. rhabdomyo sarcoma	Casanova, M; et al ^[67]
		DNA LINKING AGENTS:		
37	CARBOPLATIN : PARAPLATIN O O Pt NH_3 NH_3 cis-diammine(cyclobutane-1,1- dicarboxylate-0,0')platinum(II) Formula: $C_6H_{12}N_2O_4Pt$ Mol. mass: 371.249 g/mol	Aquation, or the like- cisplatin hypothesis. Activation, or the unlike- cisplatin hypothesis. while the latter hypothesis envisages a biological activation mechanism to release the active Pt2+ species.	Ovarian carcinoma, lung, head and neck cancers as well as endometrial, esophageal, bladder, breast and cervical	Wheate NJ, et al ^[68]
38	CISPLATIN : PLATINOL CI , NH_3 CI , Pt , NH_3 (SP-4-2)-diammine dichloroplatinum(II) Formula: $H_6Cl_2N_2Pt$ Mol. mass: 300.01 g/mol	These platinum complexes react in vivo, binding to and causing crosslinking of DNA, which ultimately triggers apoptosis (program med cell death).	Small cell lung cancer, and ovarian cancer),lymphomas , and germ cell tumors	Praveen D*, et al ^[69]
38'	OXALIPLATIN : ELOXATIN $\begin{array}{c} H_2 \\ Pt \\ H_$	Oxaliplatin forms both inter- and intra-strand cross links in DNA,which prevent DNA replication and transcription, causing cell death.	Colorectal cancer	Graham, et al
		BIOLOGICAL AGENTS :		
39	BEVACIZUMAB : AVASTIN	Binds directly to VEGF to form a protein complex which is incapable of further binding to VEGF	Glioblastoma metastatic cancers colorectal	Los, M.; et al [71]

		133N. 2347-7001		
	O II	receptor sites (which would		
		initiate vessel growth)		
		effectively reducing		
	N.	available VEGF.		
	N	The Bevacizumah /VEGE		
	NH ₂	complex is both		
		metabolized and everated		
	Formula: C ₆₆₃₈ Π ₁₀₁₆₀ N ₁₇₂₀ O ₂₁₀₈ S ₄₄	dive atta		
	Mol. mass: approx. 149 k Da	directly.		
40	CETUXIMAB : ERBITUX	Binds to EGFR and turns off	Metastatic colorect	Micromedex
		the uncontrolled growth in	al cancer,	Healthcare
		cancers with EGFR	metastatic non-	Series et al
		mutations.	small cell lung	[72]
	N ~ I I I I	However, if the KRAS	cancer	
	O N	protein is mutated,		
		cetuximab has been found		
		not to work mutated gene		
	Formula: C ₆₄₈₄ H ₁₀₀₄₂ N ₁₇₃₂ O ₂₀₂₃ S ₃₆	now does not respond to		
	Mol. mass: 145781.6 g/mol	the ECEP recentor		
11		Inhibits this maturation of	Multiple revelere-	MaChura at
41		inhibits this maturation of	Multiple myeloma	Nicclung, et
		osteoclasts by binding to	and giant cell tumor	alt
		and inhibiting RANKL.	of bone	
	N			
	HO CC OH			
	P P			
	но о о он			
	Formula: CHN			
	Mol. mass: 144.7 kDa			
12	MOI: Mass. 144.7 KDa	Enlatinik is an ECED		Device and D
42		Eriotinio is an EGFR	Non-small cell lung	Raymond E,
		inhibitor.	cancer (NSCLC),	et al 🐪
		inhibiting the ATP,	pancreatic cancer	
	H ₃ C V V V V	formation of		
	HN C	phosphotyrosine residues in		
		EGFR is not possible and the		
		signal cascades are not		
	N-(3-ethynylphenyl)-6,7-bis(2-	initiated.		
	methoxyethoxy)			
	quinazolin-4-amine			
	Formula: C ₂₂ H ₂₃ N ₃ O ₄			
	Mol. mass: 393.436 g/mol			
43	GEFITINIB: IRESSA	Gefitinib inhibits EGFR	Metastatic,	Takimoto
	F	tyrosine kinase by binding	unresectable NSCLC	CH, Calvo E.
		to the adenosine		et al ^[75]
		triphosphate (ATP)-binding		
		site of the enzyme Thus the		
		function of the FGFR		
	N/	twosing kings in activating		
	N-(3-chloro-4-fluoro-nhenvl)-7-	the entionentation		
	methoxy-			
	6-(3-mornholin-4	signal transduction		
	0-(5-morphoim-4-	cascade is inhibited, and		

		15511.2517 7001	[
	ylpropoxy)quinazolin-4-amine	malignant cells are		
	Formula: C ₂₂ H ₂₄ ClFN ₄ O ₃	inhibited.		
	Mol. mass: 446.902 g/mol			
44	IMATINIB: GLIVEC	Imatinib also inhibits	Chronic	Deininger
	N	the abl protein of non-	myelogenous	MW, et al [76]
		cancer cells but cells	leukemia (CML),gas	Vigneri et al
	N I	normally have additional	trointestinal	[77]
	П н н	redundant tyrosine kinases	stromal	
		which allow them to	tumors (GISTs) and	
	Ň Ň Ö	continue to function even	a number of other	
	4-[(4-methylpiperazin-1-	if abl tyrosine kinase is	malignancies.	
	yl)methyl]-N-(4-methyl-3-{[4-	inhibited. where it is unable		
	(pyridin-3-yl)pyrimidin-2-	to perform any of its normal		
	yl]amino}phenyl)benzamide	anti-apoptopic functions. [76-		
	Formula: C ₂₉ H ₃₁ N ₇ O	77]		
	Mol. mass: 493.603 g/mol			
45	INTERFERON: ROFERON A	Interferon beta binds to	relapsing/remitting	de Weerd
		type I interferon receptors	multiple sclerosis	NA, et al ^[78]
	Proteins made and released	(IFNAR1 and IFNAR2c)		Russell-
	by host cells in response to the	which activate two Jak		Harde D et al
	presence of pathogens such	(Janus kinase) tyrosine		[79]
	as viruses, bacteria, parasites or tu	kinases (Jak1 and Tyk2).		
	mor cells.	These transphosphorylate		
	named after their ability to	themselves and		
	"interfere" with viral replication ⁷⁸	phosphorylate the		
	Formula: C ₉₀₈ H ₁₄₀₈ N ₂₄₆ O ₂₅₃ S ₆	receptors. The		
	Mol. mass: 20011.0000	phosphorylated INFAR		
		receptors then bind to Stat1		
		and Stat2 (signal		
		transducers and activators		
		of transcription) Interferon		
		beta binds more stably to		
		type I interferon receptors		
		than interferon alpha. [79]		
46	IPILIMUMAB : YERVOY	Ipilimumab is designed to	Non-small cell lung	Antoni Ribas
		block the activity of CTLA-4,	carcinoma	et al
			(NSCLC),	
			small cell lung	
	~ Lover The to		cancer	
	- μ δ "			
	nu vn			
	Formula: CestoH10136N1734O2000S40			
	Mol. mass: 148 kDa			
47	LAPATINIB: TYKERB			
		Lapatinib inhibits receptor		Dr. Angel
		signal processes by binding	Metastatic breast	Rodriguez ^[81]
		to the ATP-binding pocket	cancer	Ŭ
		of the EGFR/HER2		
		protein kinase domain		

-		100111 2011 1002		
48	$\begin{aligned} & \qquad $	Panitumumab IS immunization of transgenic mice (XenoMouse) that are able to produce humanimmunoglobulin ligh t and heavy chains. B cells that produced an antibody against EGFR was selected and immortalized	Metastatic colorectal cancer	U.S. Food and Drug Administration [82]
49	RITUXIMAB: RITUXAN $ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & $	(CHO) cells. It elicits shedding of CD23. It downregulates the B cell receptor. It induces apoptosis of CD20+ cells.	Treat diseases which are characterized by having too many B cells, overactive B cells, or dysfunctional B cells.	T Shaw, J et al ^[83]
50	SUNITINIB: SUTENT F (J) H N-(2-diethylaminoethyl)-5-[(Z)-(5- fluoro-2-oxo-1H-indol-3- ylidene)methyl]-2,4-dimethyl-1H-	Sunitinib inhibits cellular signaling by targeting multiple receptor tyrosine kinases (RTKs). sunitinib inhibits other RTKs. These include the following:RET, CSF-1R, flt3	Gastrointestinal stromal tumor Pancreatic neuro- endocrine tumors Renal cell carcinoma	Pfizer, Inc, New York NY. ^[84]

Renal cell carcinoma (RCC), unresectable hepat ocellular carcinomas(HCC) and thyroid cancer	Bleeding; including serious bleeds such as
Renal cell carcinoma (RCC), unresectable hepat ocellular carcinomas(HCC) and thyroid cancer	Bleeding; including serious bleeds such as
Renal cell carcinoma (RCC), unresectable hepat ocellular carcinomas(HCC) and thyroid cancer	Bleeding; including serious bleeds such as
Renal cell carcinoma (RCC), unresectable hepat ocellular carcinomas(HCC) and thyroid cancer	Bleeding; including serious bleeds such as
	intracranial and intra- pulmonary bleeds ^[85]
Renal cell carcinoma	Wan, Xiaolin; et al ^[86]
HER2-positive breast cancer, ^[87]	Moja L, et al ^[87] Breast Cancer Care ^[88] Ménard, S; et al ^[89]
 F	HER2-positive breast cancer, ^[87]

		by downregulation of HER2/neu ^[88-89]		
54	BISPHOSPHONATES: OH R_1 OH O = P - C - P = O O = P - C - P = O OH R_2 OH	Bisphosphonates inhibit the digestion of bone by encouraging osteoclasts to undergo apoptosis, or cell death, thereby slowing bone loss.	osteoporosis osteitis deformans bone metastasis multiple,myeloma, hyper- parathyroidism,	Weinstein RS, et al ^[90]
55	CLODRONATE: CLODRONIC ACID OOH HOPPPOH OH CICI dichloro-phosphono- methyl)phosphonic acid Formula: $CH_4Cl_2O_6P_2$ Mol. mass: 244.892 g/mol	The exact mechanism of action of clodronate is not known, however it is known that it does not inhibit protein isoprenylation but can be metabolized intracellularly to a β - γ - methylene (AppCp-type) analog of ATP (AppCCl2p),	Osteoporosis in post-menopausal women	Lehenkari PP, et al ⁹¹
56	IBANDRONIC ACID : BONIVA H_3C $H_$	Inhibits osteoclast activity and reduces bone resorption and turnover. In postmenopausal women, it reduces the elevated rate of bone turnover, leading to, on average, a net gain in bone mass.	Post-menopausal osteoporosis.	"boniva". The American Society of Health- System Pharmacists. ^[92] Epstein S, et al ^[93]
57	PAMIDRONATE: PAMIDRONIC ACID HO - P - OH HO - HO - HO - HO - OH HO - HO -	Inhibition of bone resorption	Osteoporosis Paget's disease ^[94]	Zarychanski R, et al ^[94]
58	ZOLENDRONIC ACID: ZOLEDRONATE HO HO HO HO OH HO OH (1-hydroxy-2-(1H-imidazol-1- yl)ethane-1,1-diyl]bis(phosphonic	Zoledronic acid slows down bone resorption, allowing the bone-forming cells time to rebuild normal bone and	Osteoporosis Paget's disease	Aclasta label- Australia ^[95]

		10011 2017 7001		
	acid)	allowing bone remodeling		
	Formula: $C_5H_{10}N_2O_7P_2$			
	Mol. mass: 272.09 g/mol			
		HORMONES/OTHER:		
59	ANASTROZOLE: ARIMIDEX	Anastrozole binds reversibly	Breast cancer in	
	N _N ⊂, CH ₃	to the aromatase enzyme	post menopausal	
	CH ₃	through competitive	women	Simpson ER
	N ₁	inhibition, inhibits the		et al
		conversion of androgens to		
		estrogens in peripheral		
	H ₃ C CH ₃	tissues (extra-gonadal)		
	2,2'-[5-(1H-1,2,4-triazol-1-			
	ylmethyl)-1,3-phenylene]bis(2-			
	methylpropanenitrile			
	Formula: $C_{17}H_{19}N_5$			
	Mol. mass: 293.366 g/mol			
60	ABIRATERONE: ZYTIGA			
	Ű_)	Inhibition of CYP17 activity		Food and
	\sim	by abiraterone thus	castration-resistant	brug Admin- istration ^[97]
		of tostostoropo	prostate cancer	Istration
	Ĥ Ĥ	or testosterone		Attard G at al
	(3B)-17-(pyridin-3-yl)androsta-			[98]
	5 16-dien-3-ol			
	Formula: CatHatNO			
	Mol. mass: 349.509 g/mol			
61	AMIFOSTINE: ETHYOL	Amifostine detoxifies	Xerostomia	Kouvaris JR.
	НО	reactive metabolites of	lung cancer	et al ^[99]
		platinum and alkylating		
		agents, as well as		
	10 (<u>0</u> 11	scavenges free radicals.		
	2-(3-aminopropylamino)	^[99] Other possible effects		
	ethylsulfanyl	include accelerated DNA		
	phosphonic acid	repair, induction of cellular		
	Formula: $C_5H_{15}N_2O_3PS$	hypoxia, inhibition of		
	Mol. mass: 214.224 g/mol	apoptosis.		
62	BEXAROTENE: TARGRETIN	Bexarotene is	Alzheimer's disease	Brunton, L; et
		a retinoid that selectively	non-small cell lung	al
		activates retinoid X	cancer and breast	
		receptors (RXRs), as	cancer.	
		opposed to the retinoic acid		
	Ö /\	receptors which regulate		
	4-[1-(3,5,5,8,8-	cell differentiation and		
	pentamethyltetralin-2-	proliferation whereas RXRs		
	yl)ethenyl]benzoic acid	regulate apoptosis.		
	Formula: $C_{24}H_{28}O_2$			
	Mol. mass: 348.478 g/mol			
63	BICALUTAMIDE : CASODEX			

	$F_{F} + H_{0} + H_{0$	Bicalutamide acts as a pure anti-androgen by binding to the androgen receptor (AR) and preventing the activation of the AR and subsequent upregulation of androgen responsive genes by androgenic hormones. [101]	Andogen receptor positive ER-/PR- metastatic breast cancer ^[102]	Furr BJ et al
64	BUSERELIN: ETILAMIDE $ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	Buserelin desensitizes the GnRH receptor, reducing the amount of LH and testosterone. However, there is a concomitant surge in LH and testosterone levels with the decrease in androgens, so antiandrogens must administered. ^[103]	Prostate cancer or breast cancer endometriosis or ut erine fibroids	Kirby RS, et al
65	CYPROTERONE H H H H H H H H H H	Cyproterone is blockage of the binding of dihydrotestosterone to the specific receptors in the prostatic carcinoma cell. [105]	Antiandrogen and progestin. ^[104]	Index Nominum 2000: International Drug Directory. ^[104] Stadtler FA, et al ^[105]
66	DEGARELIX: FIRMAGON $\downarrow \downarrow $	GnRH antagonists compete with natural GnRH for binding to GnRH receptors in the pituitary gland. This reversible blinding blocks the release of LH and FSH from the pituitary. The reduction in LH subsequently leads to a rapid and sustained suppression of testosterone release from the testes and subsequently reduces the size and growth of the prostate cancer. ^[107]	Prostate cancer ^[106]	Princivalle M, et al ^[106] Persson BE, et al ^[107]

67		Dringing on that	Advanced breast	Aromasin For
07	EXEINESTAINE: AROMASIN	Principal enzyme that	Auvanceu breast	Aromasin For
		converts androgens to	cancer in	Advanced
		estrogens both in pre- and	postmenopausal	Breast
		postmenopausal women.	women ⁽²⁰⁰⁾	Cancer
		Exemestane is an		Robinson A:
	A A	irreversible, steroidal		et al
	0	aromatase inactivator,		
		lowers circulating estrogen		
	6-Methylideneandrosta-1 4-diene-	concentrations in		
	3 17-dione	postmenopausal women,		
	Formula: CHO-	[109]		
	Mol mass: 296 403 g/mol			
	Mol. mass. 250.405 g/mol			
68	FLUTAMIDE	Elutamide is a nonsteroidal	Prostate cancer	Scher
00		antiandrogen that blocks	transsevual	Howard et al
		the action of both	women ^[110]	[110]
		endogenous and exogenous	women	lack
	人人人 CH ₂	testosterone by hinding to		Lawrence et
	F_3C N γ N	the androgen recentor. In		$al^{[111]}$
	H I	addition Elutamide is a		ai
	CH ₃	notont inhibitor of		
	2-methyl-N-[4-nitro-3-	tostostorono stimulatod		
	(trifluoromethyl)phenyl]-	prostatic DNA synthesis ^[111]		
	propanamide	prostatic DNA synthesis.		
	Formula: C ₁₁ H ₁₁ F ₂ N ₂ O ₂			
	Mol. mass: 276.212 g/mol			
69	FOLINIC ACID: LEUCOVORIN	Folinic acid. therefore.	Colon cancer	Ellis JM. et al
	Ö	allows for	Toxoplasmosis-	[112]
	O PO NH	some purine/pyrimidine syn	retinitis.	
		thesis to occur in the	Down's syndrome.	
	H OS OH	presence of dihydrofolate	, ,	
	H_2N N N H_2N H H OH	reductase inhibition. so that		
	2S)-2-{[4-[(2-amino-5-formy]-4-	some		
	0x0-5 6 7 8-	normal DNA replication		
	tetrahydro-1H-nteridin-6-	processes can proceed. ^[112]		
	vl)methylaminol			
	benzovllamino}pentanedioic acid			
	Formula: C ₂₀ H ₂₂ N ₇ O ₇			
	Mol. mass: 473.44 g/mol			
70	FULVESTRANT: FASLODEX	fulvestrant binds to the	hormone receptor	Angela Mae
		receptors and down	positive metastatic	et al ^[113]
		regulates them so that	breast cancer in	Kabos Petal
		estrogen is no longer able	postmenonausal	[114]
	HO	to hind to these recentors	women ^[113]	
	F F	Second fullyestrant		
	(7α,17β)-7-{9-[(4,4,5,5,5-	degrades the estrogen		
	pentafluoropentyl)sulfinyl]nonyl}e	recentors to which it is		
	stra-1,3,5(10)-triene-3,17-diol	hound Both of these		
	Formula: C ₃₂ H ₄₇ F ₅ O ₃ S			

	Mol. mass: 606 772 g/mol	mochanisms inhibit the		
	Wol. mass. 000.772 g/mol	growth of tomovifon		
		growth of tamoxiten-		
		resistant as well as		
		estrogen-sensitive numan		
		breast cancer cell lines.		
/1				
		Goserellin is a synthetic	Breast and prostate	
		decapeptide analogue of	cancer.	
		LHRH. Goserelln acts as a		FDA ^[115]
	NH NH NH	potent inhibitor of pituitary		
	HN NH2	gonadotropin secretion		Krina Satal
	HNEO	when administered in the		[116]
		biodegradable formulation.		
	N-(21-((1H-indol-3-vl)methyl)-1 1-	The result is sustained		
	diamino-12-(tert-butoxymethyl)-6-	suppression of LH and		
	(2-(2-	serum testosterone levels.		
	carbamovlhydrazinecarbonyl)cyclo			
	pentanecarbonyl)-15-(4-			
	hydroxybenzyl)-18-			
	(hydroxymethyl)-25-(1H-imidazol-			
	5-yl)-9-isobutyl-8 11 14 17 20 23-			
	hexaoxo-2 7 10 13 16 19 22-			
	hentaazapentacos-1-en-24-yl)-5-			
	oxopyrrolidine-2-carboxamide			
	Formula: CroHotNaO			
	Mol mass: 1269 410 g/mol			
72				
-				
		Lanreotide is a synthetic	Acromegaly	"FDA ^[117]
	H ₂ N O H ₂ N	octapeptide analogue of	carcinoid	Tercica. Et al
	HO NH HN O	somatostatin. an	syndrome. ^[117]	[118]
		endogenous peptide	- 1	
		present in several areas of		
	H J J V OH	the central nervous system		
	∫ NH	and GI tract.		
	NH ₂	It has inhibitory effects on		
	(4S,7S,10S,13R,16S,19S)-10-(4-	different cell types and on		
	aminobutyl)-19-	endocrine, neuroendocrine,		
	[[(2R)-2-amino-3-naphthalen-2-yl-	and exocrine mechanisms.		
	propanoyl]amino]-	[118]		
	N-[(1S,2R)-1-carbamoyl-2-hydroxy-			
	propyl]-16-			
	[(4-hydroxyphenyl)methyl]-13-			
	(1H-indol-3-ylmethyl)-			
	6,9,12,15,18-pentaoxo-7-propan-			
	2-yl-1,2-dithia-5,8,			
	11,14,17-pentazacycloicosane-4-			
1	carboxamide			

	Formula: $C_{54}H_{69}N_{11}O_{10}S_2$			
	Mol. mass: 1096.33 g/mol			
73	LENALIDOMIDE : REVLIMID O V V NW V NW V NH O NH	Three main activities: direct anti-tumor effect, inhibition of angiogenesis, and immunomodulatory role. ^[119]	Multiple myeloma Myelodysplastic syndromes Hodgkin's lymphoma, ^[15] as well as non- Hodgkin's lymphoma, chronic lymphocytic leukemia,	Vallet S, et al ^[119]
74	LETROZOLE: FEMARA	Letrozole prevents the aromatase from producing estrogens by competitive, reversible binding to the heme of its cytochrome P450 unit. The action is specific, and letrozole does not reduce production of mineralo- or corticosteroids.	Ovarian stimulation gynecomastia azoospermia ^[120]	Haberfeld, H, ed. Et al ^[120]
75	LEUPRORELIN: LUPRON $\begin{aligned} & \qquad \qquad$	Indirectly downregulates the secretion of gonadotropins luteinizing hormone(LH) and follicle- stimulating hormone (FSH), leading to hypogonadism and thus a dramatic reduction in estradiol and testosteron e levels in both sexes	Paraphilias Alzheimer's disease	Badaru Aet al [121]

		155N: 254/-/001		
76	MEDROXYPROGESTERONE: MP	Progestins diffuse freely	Endometriosis,	Schindler AE
	нΩ	into target cells in the	endometrial and	et al [122]
	0 L	female reproductive tract,	renal cell	
		mammary gland,	carcinomas,	
		hypothalamus, and the	paraphilia in males,	
		pituitary and bind to the		
		progesterone receptor.		
		Once bound to the		
	0~ ~ ~	receptor, progestins slow		
	Ē	the frequency of release of		
	(6α)-17-hydroxy-6-methylpregn-4-	gonadotropin releasing		
	ene-3,20-dione	hormone (GnRH) from the		
	Formula: C ₂₂ H ₃₂ O ₃	hypothalamus and blunt the		
	Mol. mass: 344.488 g/mol	pre-ovulatory LH surge.		
77	MEGESTROL:	Involve suppression of	Metastatic breast	Pascual Lopez
	н С	luteinizing hormone by	cancer, endometrial	A et al ^[123]
		inhibition of pituitary	cancer, and	
	H	function, megestrol's	prostate cancer	
	Ĥ Ĥ	weight gain effect is related		
		to its appetite-stimulant or		
	17-hydroxy-6-methylpregna-4,6-	metabolic effects rather		
	diene-3,20-dione	than its glucocorticoid-like		
	Formula: $C_{22}H_{30}O_3$	effects or the production of		
	Mol. mass: 342.472 g/mol	edema		
78	MESNA: MESNEX	Prophylactic agent to	Haemorrhagic	World Health
10		reduce the risk of	cystitis and	Organization
		hemorrhagic cystitis	haematuria	[124]
		induced by ifosfamide		
	sodium 2-sulfanyletnanesulfonate			
	Formula: $C_2H_5NaO_3S_2$			
70	Mol. mass: 164.181 g/mol			
79				
	МЦ .	Ostrostido bisdata		
	O NH H	somatostatin receptors.	A ana na a a li s a sa d	
	i N V	inese receptors are	Acromegaly and	LUSTIG KH ET
	HO O S O NH N	coupled via pertussis toxin	gigantism,	alt
	HO OH OH	sensitive G proteins which	acute lymphoblastic	
	H HN NH	lead to inhibition of	leukemia	Ruan W et al
	T H H T	adenylyl cyclase. Octreotide		
		binding to these receptors		
		also stimulates		
		phosphotyrosine		
	(4K, /S, 10S, 13K, 16S, 19K)-10-(4-	phosphatase and activation		
	aminobutyi)-19-	of the Na(+)/H(+) exchanger		
	[[(2R)-2-amino-3-phenyl-	via pertussis toxin		
	propanoyljaminoj-16-	insensitive G proteins.		
	benzyl-N-[(2R,3R)-1,3-			

	dihydroxybutan-2-yl]-7- (1-hydroxyethyl)-13-(1H-indol-3- ylmethyl)-6,9,12, 15,18-pentaoxo-1,2-dithia- 5,8,11,14,17- pentazacycloicosane-4- carboxamide Formula: $C_{49}H_{66}N_{10}O_{10}S_2$ Mol. mass: 1019.24 g/mol			
80	STILBOESTROL: DIETHYLSTILBESTROL H0 4,4'-(3E)-hex-3-ene-3,4- diyldiphenol Formula: C ₁₈ H ₂₀ O ₂ Mol. mass: 268.35 g/mol	Binding their receptors causes downstream increases the hepatic synthesis of sex hormone binding globulin (SHBG), decreasing the secretion of gonadotropin-releasing hormone (GnRH).	Gonorrheal vaginitis, atrophic vaginitis, menopausal symptoms, and postpartum lactation	Dutton DB et al ^[127] Baron S et al ^[128]
81	TAMOXIFEN: NOLVADEX $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ (Z)-2-[4-(1,2-diphenylbut-1- enyl)phenoxy]-N,N- dimethylethanamine Formula: C ₂₆ H ₂₉ NO Mol. mass: 371.515 g/mol	Tamoxifen needs to block growth factor proteins such as ErbB2/HER2 because high levels of ErbB2 have been shown to occur in tamoxifen resistant cancers.	McCune-Albright syndrome Gynecomastia Angiogenesis and cancer Riedel's thyroiditis	USA ^[129] Osborne CK ^[130]
82	THALIDOMIDE: THALOMID $\begin{array}{c} \hline \qquad $	Thalidomide can directly inhibit angiogenesis induced by bFGF or VEGF in vivo	Colorectal cancer Crohn's disease Rheumatoid arthritis, Behcet's syndrome	Franks et al ^[131] D'Amato RJ, et al ^[132]
83	TRIPTORELIN: TRELSTAR	Triptorelin is a synthetic luteinizing hormone releasing hormone (LHRH) analog triptorelin stimulates release of gonadotropins, luteinizing hormone (LH) and follicle-stimulating	Prostate cancer or breast cancer, precocious puberty,	Lahlou N, et al ^[133] Kalamazoo, MI et al ^[134]

PRINCIPLES OF ANTICANCER DRUGS (THERAPY)					
S.NO	DESCRIPTION	TYPES			
SURGICAL TREATMENT:	The removal of the tumor as a local	Curative resection,			
	pathological formation, but also the	Palliative surgery,			
	involvement of the whole organism.	Preventive surgery,			
	Effective easy to perform and economical.	Diagnostic surger,			
		Cytoreductive surger,			
		Cryosurgery ^[135]			
RADIOTHERAPY:	Radiotherapy is based on the fact that	Radiotherapy can be used in three			
	ionizing radiation destroys tumor cells.	modalities:			
	X rays and gamma rays are able to	curative radiotherapy;			
	penetrate the tissue depth, destroying	adjuvant radiotherapy;			
	tumor cells even from deep layers.	palliative radiotherapy ^[136] .			
	Radiotherapy induces direct lesions in the	Palliative radiotherapy			
	DNA or biological molecules, which	Teleradiotherapy			
	eventually affect DNA.	Brachytherapy			
	These changes deregulate cell division, and	Metabolic radiotherapy			
	daughter cells finally die.	radiosensitivity of non-tumor			
		tissues			
		radiosensitivity of tumor tissues			
		Canine tumors			
		Tumors in felines			
CHEMOTHERAPY:	Chemotherapy uses chemical substances	Goldie-coldman model			
	that act electively on cells in mitosis, and	All anticancer agents [137]			
	antimitotic agents finally aim to destroy				
	cancer cells. These substances have the				
	great advantage that they do not act strictly				
	locally on the primary neoplasm, and				
	antimitotic agents perform a therapy of the				
	potential or disseminated systemic disease.				

HYPERTHERMIA:	Hyperthermia therapy is used due to its cytotoxic effects and because it can be an adjuvant to chemotherapy and radiotherapy. However, it should be mentioned that the use of hyperthermia may also have undesired effects (inefficiency, toxicity, increased tolerance to heat and even the appearance of resistant cells).	Temperatures higher than 41°C induce lesions in tumor tissues, directly by cytotoxicity, and indirectly, by microcirculatory lesions. ^[138]
COMBINED TREATMENT:	The separate studies of the effects of hyperthermia and radiotherapy on tumor cells have led to the conclusion of the combination of the two beneficial results, based on the following reasons: High temperatures have cytotoxic effects on acidophilic cells in hypoxic condition. These findings correlated with the fact that hypoxic cells manifest a 2.5–3-fold increased resistance to destruction by radiation have determined the association of the two therapies. Hyperthermia increases the radiosensitivity of all cells and diminishes the repair of sublethal lesions induced by radiation. Hyperthermia is preferentially cytotoxic for cells in the S phase of the cell cycle, in contrast, these cells being almost radioresistant.	Combined hyperthermia- radiotherapy treatment Combined hyperthermia- chemotherapy treatment ^[138]
PHOTOTHERAPY:	Dynamic phototherapy refers to the use of hematoporphyrin or photofrin II preparations, at specific light wavelengths, in the detection and treatment of malignant solid tumors. Both the detection and treatment of tumors by the dynamic phototherapy technique depend on the character of the neoplasm and on the location of the preparation in the tumor. So, at a certain time after the intravenous injection of the preparation, this accumulates and is retained in a higher concentration in malignant tissues compared to normal tissues	Hematoporphyrin used in oncology. dihematoporphyrin ether, experimentally tested under the designation of photofrin II. The tumor can be located using hematoporphyrin, by lighting with 405 nm light, which has a fluorescence of approximately 630 nm (red-orange). ^[139]

10511. 2517 7001					
IMMUNOTHERAPY:	Immunotherapy is another modality of stimulating the host defense mechanisms, an anticancer strategy. Experiments and practical results have proved that immunotherapy alone has an inconsistent efficacy, while preceded by surgery for tumor volume reduction, by radiotherapy or chemotherapy, it has proved to be a valuable adjuvant in the treatment of neoplastic disease.	Preventive immunotherapy Non-specific active immunotherapy Specific active immunotherapy Specific passive immunotherapy Chemoimmunotherapy ^[140]			

CONCLUSION

Many anti-cancer drugs have potentially deleterious, irreversible effects to the body parts. Patients at high risk should be identified early and different therapeutic treatments should be done by providing the proper anticancer agents. This review has discussed the medications that are helpful for the treatment of numerous cancers. And avoid the development of cell divisions by damaging the DNA, due to which treatment can be done in the systematic manner. According to FDA more than 100 cancers are going to arise in the future aspects. And also a brief detail has been discussed on the therapies that are used in cancer treatment.

↓ REFERENCES

1. Hanahan, Douglas; Weinberg, Robert A. "The hallmarks of cancer". Cell 100 January 7, 2000; (1): 57–70.

2. Hanahan, Douglas; Weinberg, Robert A. "Hallmarks of Cancer: The Next Generation" Cell, 2011; 144 (5): 646–74.

3. slideshare.net/intellifarhan390/anti-cancer-drugs-11444757

4. Baylin SB, Ohm JE. "Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction?" Nature Reviews Cancer, February 2006; 6 (2): 107–16.

5. UC Davis ChemWiki by University of California

6. Kath R, Blumenstengel K, Fricke HJ, **Höffken** K. "Bendamustine monotherapy in advanced and refractory chronic lymphocytic leukemia". J. Cancer Res. Clin. Oncol, January 2001; 127 (1): 48–54.

7. Leoni LM, Bailey B, Reifert J, et al. Bendamustine (Treanda) displays a distinct pattern of cytotoxicity and unique mechanistic features compared with other alkylating agents. Clin Cancer Res, 2008; 14:309-17.

8. Lesurtel M, Graf R, Aleil B, Walther D, Tian Y, Jochum W, Gachet C, Bader M, Clavien P. "Plateletderived serotonin mediates liver regeneration", 2006; Science 312 (5770): 104–7.

9. Hall AG, Tilby MJ: Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of haematological malignancies. Blood Rev, 1992 Sep; 6(3):163-73.

10. "Carmustine - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 25 March 2005. Identification. Retrieved 11 April 2012.

11. Drablos F, Feyzi E, Aas Pa, Vaagbo CB, et al : Alkylating damage in DNA and RNA-Repair mechanisms and medical significance. Dna Repair (Amst), 2004 Nov 2; 3(11): 1389-407.

12. Rai KR, Peterson BL, Appelbaum FR, Kolitz J, Elias L, Shepherd L, Hines J, Threatte GA, Larson RA, Cheson BD, Schiffer CA. "Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia." N Engl J Med, 2000; 343(24): 1750–7

13. Begleiter A, Mowat M, Israels LG, Johnson JB: Chlorambucil in chronic lymphocytic leukemia: mechanism of action. Leuk Lymphoma, 1996 oct; 23(3-4): 187-201.

14. Sistigu A, Viaud S, Chaput N, Bracci L, Proietti E, Zitvogel L. "Immunomodulatory effects of cyclophosphamide and implementations for vaccine design". Seminars in Immunopathology, July 2011; 33 (4): 369–83.

15.fass.se/LIF/produktfakta/audit_page.jsp?_sourcePage=%2Fproduktfakta%2Fartikel_produkt.jsp&doc Type=7&nplId=19971212000080

16. Lonn U, Lohn S: Prevention of dacarbazine damage of human neoplastic cell Dna b y aphidicolin. Cancer Res, 1987 Jan 1 ; 47(1); 26-30.

17. Jahnke K, Thiel E, Bechrakis NE, et al. "Ifosfamide or trofosfamide in patients with intraocular lymphoma". J. Neurooncol, Dec 2008; 93 (2): 213–7.

18. Dechant KL, Brogden RN, Pilkington T, Faulds D: Ifosfamide/mesna. A review of its antineoplastic activity, pharmacokinetic properties and therapeutic efficacy in cancer. Drugs, 1991 Sep; 42(3):428-67.

19. Facon T, Mary JY, Hulin C, et al. "Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99-06): a randomised trial", October 2007; Lancet 370 (9594): 1209–18.

20. Vasquez KM: Targeting and processing of site-specific DNA interstand crosslinks. Environ Mol Mutagen. 2010 Mar 1

21. "WHO Model List of EssentialMedicines". World Health Organization. October 2013. Retrieved 22 April 2014.

22. Szkudelski T. "The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas." Physiol Res, 2001; 50 (6): 537–46.

23. Malcolm Stevens - interview, Cancer Research UK impact & achievements page

24. Sitbon Sitruk, L.; Sanson, M.; Prades, M.; Lefebvre, G.; Schubert, B.; Poirot, C. "Chimiothérapie a gonadotoxicité inconnue et preservation de la fertilite : Exemple du témozolomide". Gynécologie Obstétrique & Fertilite, 2010; 38 (11): 660–662.

25. "Xeloda (capecitabine) dosing, indications, interactions, adverse effects, and more". Medscape Reference. WebMD. 25 January 2014.

26. Pigneux A, Perreau V, Jourdan E, et al. "Adding lomustine to idarubicin and cytarabine for induction chemotherapy in older patients with acute myeloid leukemia: the BGMT 95 trial results". Haematologica, October 2007; 92(10): 1327–34.

27. Perry, Michael J. The Chemotherapy source book. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008; p. 80.

28. Rossi, S, ed. Australian Medicines Handbook (2013 ed.). Adelaide: The Australian Medicines Handbook Unit Trust, 2013.

29. Longley DB, Harkin DP, Johnston PG "5-fluorouracil: mechanisms of action and clinical strategies". Nat. Rev. Cancer, May 2003; 3 (5): 330–8.

30. Rai KR et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia. N Engl J Med, 2000; 343:1750-7

31. N. M. F. S. A. Cerqueira, P. A. Fernandes, M. J. Ramos "Understanding ribonucleotide reductase inactivation by gemcitabine". Chemistry: A European Journal, 2007; 13 (30): 8507–15.

32. U.S. National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894 National Institutes of Health, Health & Human Services

33. McLeod, Howard L.; James Cassidy, Robert H. Powrie, David G. Priest, Mark A. Zorbas, Timothy W. Synold, Stephen Shibata, Darcy Spicer, Donald Bissett, Yazdi K. Pithavala, Mary A. Collier, Linda J.

Paradiso, John D. Roberts "Pharmacokinetic and Pharmacodynamic Evaluation of the Glycinamide Ribonucleotide Formyltransferase Inhibitor AG2034".Clinical Cancer Research; Clinical Trials, July 2000; 6 (7): 2677–84.

34. Manegold C "Pemetrexed (Alimta, MTA, multitargeted antifolate, LY231514) for malignant pleural mesothelioma". Semin. Oncol, August 2003; 30 (4 Suppl 10): 32–6.

35. Widemann BC, Balis FM, Godwin KS, McCully C, Adamson PC."The plasma pharmacokinetics and cerebrospinal fluid penetration of the thymidylate synthase inhibitor raltitrexed (Tomudex) in a nonhuman primate model". Cancer Chemother. Pharmacol, 1999; 44 (6): 439–43.

36. Sobell H, "Actinomycin and DNA transcription". Proceedings of the National Academy of Sciences of the United States of America, 1985; 82 (16): 5328–31.

37. Turan T, Karacay O, Tulunay G, Boran N, Koc S, Bozok S, Kose M "Results with EMA/CO (etoposide, methotrexate, actinomycin D, cyclophosphamide, vincristine) chemotherapy in gestational trophoblastic neoplasia". Int J Gynecol Cancer, 2006; 16(3): 1432–8.

38. Abd El-Aal H, Habib E, Mishrif M "Wilms' Tumor: The Experience of the Pediatric Unit of Kasr El-Aini Center of Radiation Oncology and Nuclear Medicine (NEMROCK)". J Egypt Natl Canc Inst, 2005; 17 (4): 308–11.

39. Khatua S, Nair C, Ghosh K "Immune-mediated thrombocytopenia following dactinomycin therapy in a child with alveolar rhabdomyosarcoma: the unresolved issues". J Pediatr Hematol Oncol, 2004; 26 (11): 777–9.

40. Jaffe, N.; Paed, D.; Traggis, D.; Salian, S.; Cassady, J. R"Improved outlook for Ewing's sarcoma with combination chemotherapy (vincristine, actinomycin D and cyclophosphamide) and radiation therapy". Cancer, 1976; 38 (5): 1925–1930.

41. Uberti, E. M. H.; Fajardo, M. D. C.; Ferreira, S. V. V. R.; Pereira, M. C. V.; Seger, R. C.; Moreira, M. A. L. R.; Torres, M. D.; De Nápoli, G.; Schmid, H. "Reproductive outcome after discharge of patients with highrisk hydatidiform mole with or without use of one bolus dose of actinomycin D, as prophylactic chemotherapy, during the uterine evacuation of molar pregnancy". Gynecologic Oncology, 2009; 115 (3): 476–481.

42. Lewis, TG; Nydorf, ED "Intralesional bleomycin for warts: a review.". Journal of Drugs in Dermatology, 2006; 5 (6): 499–504.

43. Shaw, P; Agarwal, R "Pleurodesis for malignant pleural effusions". In Shaw, Paul HS. Cochrane Database of Systematic Reviews (1), 2004;

44. Hecht, SM "Bleomycin: new perspectives on the mechanism of action". J. Nat. Prod, 2000; 63: 158–168.

45. G J Quigley, A H Wang, G Ughetto, G van der Marel, J H van Boom, and A Rich "Molecular structure of an anticancer drug-DNA complex: daunomycin plus d(CpGpTpApCpG)". PNAS, December 1980; 77 (12): 7204–7208.

46. Pang B, Qiao X, Janssen L, Velds A, Groothuis T, Kerkhoven R, Nieuwland M, Ovaa H, Rottenberg S, van Tellingen O, Janssen J, Huijgens P, Zwart W, Neefjes J "Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin". Nature Communications, 2013; 4: 1908.

47. Brayfield A, ed."Doxorubicin". Martindale: The Complete Drug Reference. Pharmaceutical Press, 19 December 2013 Retrieved 15 April 2014

48. Pang B, Qiao X, Janssen L, Velds A, Groothuis T, Kerkhoven R, Nieuwland M, Ovaa H, Rottenberg S, van Tellingen O, Janssen J, Huijgens P, Zwart W, Neefjes J "Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin". Nature Communications, 2013.

4 (5): 1908.

49. Bonfante, V; Bonadonna, G; Villani, F; Martini, A "Preliminary clinical experience with 4-epidoxorubicin in advanced human neoplasia".Recent results in cancer research, 1980. 74: 192–9.

50. Pang B, Qiao X, Janssen L, Velds A, Groothuis T, Kerkhoven R, Nieuwland M, Ovaa H, Rottenberg S, van Tellingen O, Janssen J, Huijgens P, Zwart W, Neefjes J "Drug-induced histone eviction from open chromatin contributes to the chemotherapeutic effects of doxorubicin". Nature Communications, 2013. 4: 1908

51. Tomasz, Maria "Mitomycin C: small, fast and deadly (but very selective)."Chemistry and Biology, September 1995. 2 (9): 575–579.

52. Renault, J.; Baron, M; Mailliet P. et al. Heterocyclic quinones 2. Quinoxaline-5,6-(and 5-8)-diones - Potential antitumoral agents. Eur. J. Med. Chem. 1981.16, 6, 545–550,

53. Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV, Ancliff P, Morgan M, Masurekar A, Goulden N, Green N, Révész T, Darbyshire P, Love S, Saha V "Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial". Lance 2010. t 376 (9757): 2009–2017

54. Mazerski J, Martelli S, Borowski E "The geometry of intercalation complex of antitumor mitoxantrone and ametantrone with DNA: molecular dynamics simulations". Acta Biochim. Pol, 1998; 45 (1): 1–11

55. Hande KR "Etoposide: four decades of development of a topoisomerase II inhibitor". Eur. J. Cancer 1998; 34 (10): 1514–21.

56. Pommier Y, Leo E, Zhang H, Marchand C "DNA topoisomerases and their poisoning by anticancer and antibacterial drugs". Chem. Biol. 2010. 17 (5): 421–33.

57. Gordaliza M, García PA, del Corral JM, Castro MA, Gómez-Zurita MA "Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives". Toxicon, 2004; 44 (4): 441–59.

58. Lyseng-Williamson KA, Fenton C "Docetaxel: a review of its use in metastatic breast cancer". Drugs 2005. 65 (17): 2513–31

59. Yvon AM, Wadsworth P, Jordan MA "Taxol Suppresses Dynamics of Individual Microtubules in Living Human Tumor Cells". Mol. Biol. Cell April 1999; 10 (4): 947–59.

60. Pommier, Y., Leo, E., Zhang, H., Marchand, C.. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 2010; 17: 421-433.

61. Jordan, MA; Wilson, L "Microtubules as a target for anticancer drugs". Nature reviews. Cancer 2004; 4 (4): 253–65.

62. Ganguly, A; Yang, H; Cabral, F "Paclitaxel-dependent cell lines reveal a novel drug activity". Molecular cancer therapeutics 2010; 9 (11): 2914–23..

63. Lowe, J; Li, H; Downing, KH; Nogales, E "Refined structure of \$alpha;\$beta;-tubulin at 3.5 p resolution1".Journal of Molecular Biology 2001; 313 (5): 1045–57.

64. Staker, B.L. et al "The mechanism of topoisomerase I poisoning by a camptothecin analog". PNAS 2002; 99 (24): 15387–15392

65. Yang, H.; Ganguly, A.; Cabral, F. "Inhibition of Cell Migration and Cell Division Correlate with Distinct Effects of Microtubule Inhibiting Drugs" (pdf). Journal of Biological Chemistry 2010; 285 (42): 32242–32250.

66. Brayfield, A, ed. "Vincristine". Martindale: The Complete Drug Reference. Pharmaceutical Press. 13 December 2013; Retrieved 15 April 2014.

67. Casanova, M; Ferrari, A; Spreafico, F; Terenziani, M; Massimino, M; Luksch, R; Cefalo, G; Polastri, D et al. "Vinorelbine in previously treated advanced childhood sarcomas: Evidence of activity in

rhabdomyosarcoma". Cancer 2002; 94 (12): 3263-8.

68. Wheate NJ, Walker S, Craig GE, Oun R "The status of platinum anticancer drugs in the clinic and in clinical trials". Dalton Transactions September 2010; 39 (35): 8113–27.

69. Praveen D*, Ranadheer Chowdary P, "A review on the use of Bleomycin-Cisplatin-Vinblastine combinations in therapy of testicular cancer" ,Indian Journal of Research in Pharmacy and Biotechnology, JJRPB 1(6), November – December 2013, 793-796

70. Graham, Joanne; Mushin, Mohamed; Kirkpatrick, Peter January 2004. "Oxaliplatin". Nature Reviews Drug Discovery 3 (1): 11–2.

71. Los, M.; Roodhart, J. M. L.; Voest, E. E. "Target Practice: Lessons from Phase III Trials with Bevacizumab and Vatalanib in the Treatment of Advanced Colorectal Cancer". The Oncologist 2007; 12 (4): 443–50.

72. Micromedex Healthcare Series [Internet database]. Greenwood Village, Colo: Thomson Healthcare. Updated periodically

73. McClung, Michael R.; Lewiecki, E. Michael; Cohen, Stanley B.; Bolognese, Michael A.; Woodson, Grattan C.; Moffett, Alfred H.; Peacock, Munro; Miller, Paul D. et al. "Denosumab in Postmenopausal Women with Low Bone Mineral Density". New England Journal of Medicine 354, 2006; (8): 821–31.

74. Raymond E, Faivre S, Armand J "Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy".Drugs. 2000; 60 Suppl 1: 15–23; discussion 41–2.

75. Takimoto CH, Calvo E. "Principles of Oncologic Pharmacotherapy" in Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ (Eds) Cancer Management: A Multidisciplinary Approach. 11 ed. 2008.

76. Deininger MW, Druker BJ "Specific targeted therapy of chronic myelogenous leukemia with imatinib". Pharmacol. Rev. 55, September 2003; (3): 401–23.

77. Vigneri P, Wang JY "Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase". Nat Med. February 2001, 7 (2): 228–34.

78. de Weerd NA, Samarajiwa SA, Hertzog PJ "Type I interferon receptors: biochemistry and biological functions". J Biol Chem, 2007. 282 (28): 20053–20057.

79. Russell-Harde D, Wagnere TC, Perez HD, Cronze E: Formation of a uniguely stable type-1 interferon receptor complex by interferon beta is dependent upon particular interactions between interferon beta and its receptor and independent of tyrosine phosphorylation Biochem Biophys Res Commun. 1999 Feb 16; 255(2): 539-44

80. Antoni Ribas "Tumor immunotherapy directed at PD-1". New England Journal of Medicine, 28 June 2012; 366 (26): 2517–9

81. Dr. Angel Rodriguez "New type of drug shrinks primary breast cancer tumors significantly in just six weeks; research provides leads to a new target in cancer treatment – the cancer stem cell" April 2008.

82. U.S. Food and Drug Administration

83. T Shaw, J Quan, and M Totoritis, "B cell therapy for rheumatoid arthritis: the rituximab (anti-CD20) experience", Ann Rheum Dis. 2003 Nov; 62 (Suppl 2): ii55–ii59.

84. "Prescribing information for Sutent (sunitinib malate)". Pfizer, Inc, New York NY.

85. Bleeding; including serious bleeds such as intracranial and intrapulmonary bleeds

86. Wan, Xiaolin; Shen, Na; Mendoza, Arnulfo; Khanna, Chand; Helman, Lee J. "CCI-779 Inhibits Rhabdo myosarcoma Xenograft Growth by an Antiangiogenic Mechanism Linked to the Targeting of mTOR/Hif- 1α /VEGF Signaling". Neoplasia, 2006. 8 (5): 394–401.

87. Moja L, Tagliabue L, Balduzzi S, et al. "Trastuzumab containing regimens for early breast cancer". Cochrane Database Syst Rev 4: 2012.

88. "Breast Cancer Care Trastuzumab factsheet". Breast Cancer Care. Retrieved 22 Oct2013.

ISSN: 2347-7881

89. Ménard, S; Pupa SM, Campiglio M, Tagliabue E "Biologic and therapeutic role of HER2 in cancer". Oncogene 22, 2003; (42): 6570–6578.

90. Weinstein RS, Roberson PK, Manolagas SC "Giant osteoclast formation and long-term oral bisphosphonate therapy". N. Engl. J. Med. Jan 2009; 360 (1): 53–62.

91. Lehenkari PP, Kellinsalmi M, Napankangas JP, Ylitalo KV, Monkkonen J, Rogers MJ, Azhayev A, Vaananen HK, Hassinen IE: Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol. 2002 May; 61(5):1255-62

92. "boniva". The American Society of Health-System Pharmacists. Retrieved 3 April 2011.

93. Epstein S, Zaidi M: Biological properties and mechanism of action of ibandronate: application to the treatment of osteoporosis. Bone. 2005 Oct; 37(4):433-40.

94. Zarychanski R, Elphee E, Walton P, Johnston J "Osteonecrosis of the jaw associated with pamidronate therapy." Am J Hematol 81, 2006; (1): 73–5.

95. Aclasta label- Australia

96. Simpson ER "Sources of estrogen and their importance". The Journal of Steroid Biochemistry and Molecular Biology86, 2003; (3–5): 225–30.

97. "FDA approves Zytiga for late-stage prostate cancer" (Press release). Food and Drug Administration (FDA). 2011-04-28.

98. Attard G, Belldegrun AS, de Bono JS "Selective blockade of androgenic steroid synthesis by novel lyase inhibitors as a therapeutic strategy for treating metastatic prostate cancer". BJU Int. Dec 2005; 96 (9): 1241–6.

99. Kouvaris JR, Kouloulias VE, Vlahos LJ "Amifostine: the first selective-target and broad-spectrum radioprotector". Oncologist June 2007; 12(6): 738–47

100. Brunton, L; Chabner, B; Knollman, B Goodman and Gilman's The Pharmacological Basis of Therapeutics (in English) (12th ed.). New York: McGraw-Hill Professional. 2010.

101. Furr BJ "The development of Casodex (bicalutamide): preclinical studies". Eur. Urol. 1996; 29 Suppl 2, 83–95.

102. asco.org/ASCOv2/Meetings/Abstracts?&vmview=abst_detail_view&confID=114&abstractID=94715 103. Kirby RS, Fitzpatrick JM, Clarke N: Abarelix and other Gonadotrophin-releasing hormone antagonists in prostate cancer. BJU Int. 2009 Dec; 104(11): 1580-4

104. Index Nominum 2000: International Drug Directory. Taylor & Francis US. 2000. p. 289. Retrieved 29 May 2012.

105. Stadtler FA, Langner V: The effect of cyproterone and gonadotrophins on the adrenal gland of juvenile and adult rats. A morphological and morphometrical study. Pathol Res Pract. 1985 Mar; 179 (4-5):493-8.

106. Princivalle M, Broqua P, White R, et al Rapid suppression of plasma testosterone levels and tumor growth in the dunning rat model treated with degarelix, a new gonadotropin-releasing hormone antagonist. J. Pharmacol. Exp. Ther. Mar 2007. 320: 1113-8.

107. Persson BE, Kold Olesen T, Jensen JK: Degarelix: a new approach for the treatment of prostate cancer. Neuroendocrinology.2009; 90(3):235-44. Epub 2009 Jul 14.

108. Aromasin For Advanced Breast Cancer

109. Robinson A: A review of the use of exemestane in early breast cancer. Ther Clin Risk Manag. 2009 Feb; 5(1):91-8. Epub 2009 Mar 26.

110. Scher, Howard I. "Hyperplastic and Malignant Diseases of the Prostate". In Dennis L. Kasper, Anthony S. Fauci, Dan L. Longo, Eugene Braunwald, Stephen L. Hauser, & J. Larry Jameson (Eds.),

Harrison's Principles of Internal Medicine (16th edition), New York: McGraw-Hill. 2005. pp. 548–9.

111. Jack Lawrence James, Louis Frank Molnar, Jr., Tania E. Toney-Parker, "Processes for preparing flutamide compounds and compounds prepared by such processes." U.S. Patent US 6,228,401, issued Nov, 1976.

112. Ellis JM, Tan HK, Gilbert RE, et al ."Supplementation with antioxidants and folinic acid for children with Down's syndrome: randomised controlled trial". BMJ 336 (7644): 594–7. Mar2008.

113. Angela Mae Obermiller, PharmD; and Mehmet Sitki Copur, MD "The Longstanding Quest for a Better Endocrine Therapy Continues High-Dose Fulvestrant: Have We Found Its Effective Dose, Combination, Setting, or Sequence?".Contemporary Oncology, 2011. 3 (1).

114. Kabos P, Borges VF: Fulvestrant: a unique antiendocrine agent for estrogen-sensitive breast cancer. Expert Opin Pharmacother. 2010 Apr;11(5):807-16

115. FDA Approval for Zoladex 3.6 mg

116. Kripa S. Srivastava, Matthew R. Davis, "Solid Phase Peptide for the Production of Goserelin." U.S. Patent US20100311946, issued Dec 09, 2010.

117. "FDA Approves New Drug to Treat Rare Disease, Acromegaly" (Press release). U.S. Food and Drug Administration. August 30, 2007. Retrieved 2007-09-06.

118. Tercica. SOMATULINE product monograph. Brisbane, California; 1 Aug 2007

119. Vallet S, Palumbo A, Raje N, Boccadoro M, Anderson KC "Thalidomide and lenalidomide: Mechanism-based potential drug combinations". Leukemia & Lymphoma, July 2008. 49 (7): 1238–45.

120. Haberfeld, H, ed. (Austria-Codex (in German) (2009/2010 ed.). Vienna: Osterreichischer Apothekerverlag. 2009.

121. Badaru A, Wilson DM, Bachrach LK, et al. "Sequential comparisons of one-month and three-month depot leuprolide regimens in central precocious puberty". The Journal of Clinical Endocrinology and Metabolism May 2006. 91 (5): 1862–7.

122. Schindler AE, Campagnoli C, Druckmann R, Huber J, Pasqualini JR, Schweppe KW, Thijssen JH: Classification and pharmacology of progestins. Maturitas. 2008 Sep-Oct; 61(1-2):171-80.

123. Pascual Lopez A, Roque i Figuls M, Urrutia Cuchi G, Berenstein EG, Almenar Pasies B, Balcells Alegre M, Herdman M: Systematic review of megestrol acetate in the treatment of anorexia-cachexia syndrome. J Pain Symptom Manage. 2004 Apr; 27(4):360-9.

124. "WHO Model List of EssentialMedicines". World Health Organization. October 2013. Retrieved 22 Apr 2014.

125. Lustig RH, Hinds PS, Ringwald-Smith K, Christensen RK, Kaste SC, Schreiber RE, Rai SN, Lensing SY, Wu S, Xiong X "Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial". J. Clin. Endocrinol. Metab. June 2003. 88 (6): 2586–92.

126. Ruan W, Fahlbusch F, Clemmons DR, Monaco ME, Walden PD, Silva AP, Schmid HA, Kleinberg DL: SOM230 inhibits insulin-like growth factor-I action in mammary gland development by pituitary independent mechanism: mediated through somatostatin subtype receptor 3? Mol Endocrinol. 2006 Feb; 20(2):426-36. Epub 2005 Oct 13.

127. Dutton DB Worse than the disease: pitfalls of medical progress. Cambridge: Cambridge University Press, 1988.

128. Baron S, Escande A, Alberola G et al,: estrogen receptor alpha and the activating protein-1 complex cooperate during insulin-like growth factor-I-induced transcriptional activation of the pS2/TFF1 gene. J Biol Chem. 2007 Apr 20; 282 (16): 11732-41 Epub 2007 Feb 22

129. USA (2012-10-19). "Tamoxifen treatment of pr... [J Pediatr Endocrinol Metab. 1999 Sep-Oct] - PubMed - NCBI". Ncbi.nlm.nih.gov. Retrieved 2013-01-06.

130. Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, Wong J, Allred DC, Clark GM, Schiff R, "Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer". J. Natl. Cancer Inst. March 2003. 95 (5): 353–61

131. Franks ME, Macpherson GR, Figg WD "Thalidomide". Lancet, May 2004.363 (9423): 1802–1811.

132. D'Amato RJ, Loughnan MS, Flynn E, Folkman J "Thalidomide is an inhibitor of angiogenesis". Proceedings of the National Academy of Sciences of the United States of America 1994, 91 (9): 4082–4085

133. Lahlou N, Carel JC, Chaussain JL, Roger M "Pharmacokinetics and pharmacodynamics of GnRH agonists: clinical implications in pediatrics". J Pediatr Endocrinol Metab. July 2000. 13 Suppl 1: 723–37.

134. Product Information: Trelstar Depot, triptorelin pamoate. Pharmacia & Upjohn, Kalamazoo, MI, PI reviewed 09/2000.

135. Magnol JP, Achache S. Cancerologie vétérinaire et comparée. Maloine Editeur; Paris: 1983.

136. Mc Knight JA, Mauldin GN, Mc Entee MC, Meleo KA, Patnaik AK. Radiation treatment for incompletely resected soft – tissue sarcomas in dogs. J. Am. Vet. Med. Assoc. 2000; 217 (2):205–210.

137. Theilen GH, Madewell BR, Carter SK. Chemotherapy. In: Theilen, Madewell, editors. Veterinary Cancer Medicine. Lea & Febiger; Philadelphia: 1987a. pp. 157–166.

138. Dewhirst MW. Hyperthermia. In: Theilen, Madewell, editors. Veterinary Cancer Medicine. Lea & Febiger; Philadelphia: 1987. pp. 197–214.

139. Hetzel FW. Phototherapy. In: Theilen, Madewell, editors. Veterinary Cancer Medicine. Lea & Febiger; Philadelphia: 1987. pp. 215–218.

140. Theilen GH, Madewell BR. Clinical Applications of Cancer Chemotherapy. In: Theilen, Madewell, editors. Veterinary Cancer Medicine. Lea & Febiger; Philadelphia: 1987a. pp. 183–196.