PharmaTutor (October- 2014)
ISSN: 2347 - 7881
(Volume 2, Issue 10)
Received On: 19/07/2014; Accepted On: 24/07/2014; Published On: 01/10/2014
AUTHORS: Deepika Gautam1*, Deepti Gautam2
1Department of Chemistry, Lucknow University,
Lucknow, Uttar Pradesh, India
2Department of Nursing, Era’s Lucknow Medical college and Hospital,
Lucknow, Uttar Pradesh, India
*yashdeepika1@gmail.com
ABSTRACT:
Different type of natural and synthetic agents for the treatment of Type 2 diabetes mellitus improve the metabolic profile but do not reestablished normality. They also reduce chronic diabetic complications, but they do not remove completely them. Thus, for the treatment of type2 diabetes mellitus new agents with novel actions are required to complement and extend the capabilities of existing treatments. Insulin resistance and beta-cell failure, which are main cause in the pathogenesis of Type 2 diabetes, in this review we discussed about some natural and synthetic molecule and their targets and some old oral ant diabetic drug and their mode of action.
How to cite this article: D Gautam, D Gautam; A Short Review on Anti-Diabetic Agent; PharmaTutor; 2014; 2(10); 89-105
[ABSTRACT WITH CITATION] [VIEW AS HTML]
REFERENCES:
1. "About diabetes". World Health Organization. Retrieved 4 April 2014
2. Greenspan's basic & clinical endocrinology (9th ed.). New York: McGraw-Hill Medical. pp. Chapter ISBN 0-07-162243-8.
3. "Diabetes Fact sheet N°312". WHO. October 2013. Retrieved 25 March 2014.
4. M. Jung, M. Park, H. C. Lee, Y. H. Kang, E. S. Kang and S. K. Kim,Antidiabetic agents from medicinal plants, Curr. Med. Chem., 2006,s13, 1203–18.
5. Williams textbook of endocrinology (12th ed.). Philadelphia: Elsevier/Saunders. pp. 1371–1435. ISBN 978-1-4377-0324-5
6. Shi, Yuankai; Hu, Frank B. "The global implications of diabetes and cancer".The Lancet 383 (9933): 1947–1948
7. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, et al. (Dec 15, 2012). "Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010.". Lancet 380 (9859): 2163–96.
8. "The top 10 causes of death Fact sheet N°310". World Health Organization. Oct 2013
9. IDF DIABETES ATLAS. International Diabetes Federation. 2013. p. 7.ISBN 2930229853.
10. nternational Diabetes Federation: Diabetes Atlas". Retrieved 4 April 2014
11. American Diabetes, Association (Apr 2013). "Economic costs of diabetes in the U.S. in 2012.". Diabetes care 36 (4): 1033–46
12. M. S. Lee, C. H. Kim, D. M. Hoang, B. Y. Kim, C. B. Sohn,M. R. Kim and J. S. Ahn, Genistein-derivatives from Tetracerascandens stimulate glucose-uptake in L6 myotubes, Biol. Pharm.Bull., 2009, 32, 5048.
13. Y. Feng, A. R. Carroll, R. Addepalli, G. A. Fechner, V. M. Avery and R. J. Quinn, Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors, J. Nat. Prod., 2007, 70, 1790–2.
14. F. Qa’dan, E. J. Verspohl, A. Nahrstedt, F. Petereit andK. Z. Matalka, Cinchonain Ib isolated from Eriobotrya japonicainduces insulin secretion in vitro and in vivo, J. Ethnopharmacol.,2009, 124, 2247.
15. M. Zhang, M. Chen, H. Q. Zhang, S. Sun, B. Xia and F. H. Wu, Invivo hypoglycemic effects of phenolics from the root bark of Morusalba, Fitoterapia, 2009, 80, 475–7.
16. M. Kumar, P. Rawat, N. Rahuja, A. K. Srivastava and R. Maurya,Antihyperglycemic activity of phenylpropanoyl esters of catechol glycoside and its dimers from Dodecadenia grandiflora, Phytochemistry, 2009, 70, 1448–55.
17. J. A. Ojewole, S. E. Drewes and F. Khan, Vasodilatory and hypoglycaemic effects of two pyrano isoflavone extractives fromEriosema kraussianum N.E. Br. Fabaceae] rootstock in experimentalrat models, Phytochemistry, 2006, 67, 610–7.
18. D. Govorko, S. Logendra, Y. Wang, D. Esposito, S. Komarnytsky,D. Ribnicky, A. Poulev, Z. Wang, W. T. Cefalu and I. Raskin,Polyphenolic compounds from Artemisia dracunculus L. inhibit PEPCK gene expression and gluconeogenesis in an H4IIE hepatoma cell line, Am. J. Physiol.: Endocrinol. Metab., 2007, 293,E1503–10.
19. T. Enoki, H. Ohnogi, K. Nagamine, Y. Kudo, K. Sugiyama,M. Tanabe, E. Kobayashi, H. Sagawa and I. Kato, Antidiabeticactivities of chalcones isolated from a Japanese Herb, J. Agric.Food Chem., 2007, 55, 6013–7.
20. W. Li, R. J. Dai, Y. H. Yu, L. Li, C. M. Wu, W. W. Luan,W. W. Meng, X. S. Zhang and Y. L. Deng, Antihyperglycemic effect of Cephalotaxus sinensis leaves and GLUT-4 translocationfacilitating activity of its flavonoid constituents, Biol. Pharm. Bull.,2007, 30, 1123–9.
21. L. H. Cazarolli, P. Folador, H. H. Moresco, I. M. Brighente,M. G. Pizzolatti and F. R. Silva, Stimulatory effect of apigenin-6-C-beta-l-fucopyranoside on insulin secretion and glycogensynthesis, Eur. J. Med. Chem., 2009, 44, 4668–73.
22. A. K. Tamrakar, P. P. Yadav, P. Tiwari, R. Maurya andA. K. Srivastava, Identification of pongamol and karanjin as lead compounds with antihyperglycemic activity from Pongamiapinnata fruits, J. Ethnopharmacol., 2008, 118, 435–9.
23. X. K. Fang, J. Gao and D. N. Zhu, Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity, Life Sci., 2008, 82, 615–22.
24. A.Kawano, H. Nakamura, S. Hata, M. Minakawa, Y. Miura andK. Yagasaki, Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice, Phytomedicine, 2009, 16, 437–43.
25. R. Maurya, Akanksha, Jayendra, A. B. Singh and A. K. Srivastava,Coagulanolide, a withanolide from Withania coagulans fruits and antihyperglycemic activity, Bioorg. Med. Chem. Lett., 2008, 18,65347.
26. M. J. Tan, J. M. Ye, N. Turner, C. Hohnen-Behrens, C. Q. Ke,C. P. Tang, T. Chen, H. C. Weiss, E. R. Gesing, A. Rowland, D. E. James and Y. Ye, Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway, Chem. Biol., 2008, 15, 263–73.
27. S.Panda, M. Jafri, A. Kar and B. K. Meheta, Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma, Fitoterapia, 2009, 80, 123–6.28. J. Eliza, P. Daisy, S. Ignacimuthu and V. Duraipandiyan, Normoglycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.)Sm. in streptozotocin-induced diabetic rats, Chem.-Biol. Interact., 2009, 179, 329–34.
29. P. Prabhakar Reddy, A. K. Tiwari, R. Ranga Rao, K. Madhusudhana, V. Rama Subba Rao, A. Z. Ali, K. SureshBabu and J. Madhusudana Rao, New Labdane diterpenes as intestinal alpha-glucosidase inhibitor from anti hyper glycemic extract of Hedychium spicatum (Ham. Ex Smith) rhizomes, Bioorg.Med. Chem. Lett., 2009, 19, 2562–5.
30. T. Ha do, D. T. Tuan, N. B. Thu, N. X. Nhiem, T. M. Ngoc, N. Yim and K. Bae, Palbinone and triterpenes from Moutan Cortex (Paeonia suffruticosa, Paeoniaceae) stimulate glucose uptake and glycogen synthesis via activation of AMPK in insulin-resistant human HepG2 Cells, Bioorg. Med. Chem. Lett.,\ 2009, 19, 5556–9.
31. A. Maiti, S. Dewanjee and R. Sahu, Isolation of hypoglycemicphytoconstituent from Swietenia macrophylla seeds, Phytother.Res., 2009, 23, 1731–3.
32. S. Panda and A. Kar, Evaluation of the antithyroid, antioxidative and antihyperglycemic activity of scopoletin from Aegle marmelosleaves in hyperthyroid rats, Phytother. Res., 2006, 20, 1103–5.
33. M. Zhang, M. Chen, H. Q. Zhang, S. Sun, B. Xia and F. H. Wu, In vivo hypoglycemic effects of phenolics from the root bark of Morusalba, Fitoterapia, 2009, 80, 475–7.34. Zhuo Fu, Julia Yuskavage, and Dongmin LiuDietary Flavonol Epicatechin Prevents the Onset of Type 1 Diabetes in Nonobese Diabetic Mice,J. Agric. Food Chem., 2013, 61 (18), pp 4303–4309
35. Atsushi Kato, Takahito Kunimatsu, Yukiko Yamashita, Isao Adachi, Kei Takeshita, and Fumihiro Ishikawa,Protective Effects of Dietary 1,5-Anhydro-D-glucitol as a Blood Glucose Regulator in Diabetes and Metabolic Syndrome,J. Agric. Food Chem., 2013, 61 (3), pp 611–617
36. Mei-Hsiang Lin, Hui-Kang Liu, Wei-Jan Huang, Chu-Chun Huang, Tzu-Hua Wu, and Fen-Lin Hsu,Evaluation of the Potential Hypoglycemic and Beta-Cell Protective Constituents Isolated from Corni Fructus To Tackle Insulin-Dependent Diabetes Mellitus,J. Agric. Food Chem., 2011, 59 (14), pp 7743–7751
37. Wei Meng, Bruce A. Ellsworth, Alexandra A. Nirschl, Peggy J. McCann, Manorama Patel, Ravindar N. Girotra, Gang Wu, Philip M. Sher, Eamonn P. Morrison, Scott A. Biller, Robert Zahler, Prashant P. Deshpande, Annie Pullockaran, Deborah L. Hagan, Nathan Morgan, Joseph R. Taylor, Mary T. Obermeier, William G. Humphreys, Ashish Khanna, Lorell Discenza, James G. Robertson, Aiying Wang, Songping Han, John R. Wetterau, Evan B. Janovitz, Oliver P. Flint, Jean M. Whaley and William N. Washburn,Discovery of Dapagliflozin: A Potent, Selective Renal Sodium-Dependent Glucose Cotransporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes,J. Med. Chem., 2008, 51 (5), pp 1145–1149
38. Narihiro Toda, Xiaolin Hao, Yasuyuki Ogawa, Kozo Oda, Ming Yu, Zice Fu, Yi Chen, Yongjae Kim, Mike Lizarzaburu, Sarah Lively, Shauna Lawlis, Michiko Murakoshi, Futoshi Nara, Nobuaki Watanabe, Jeff D. Reagan, Hui Tian, Angela Fu, Alykhan Motani, Qingxiang Liu, Yi-Jyun Lin, Run Zhuang, Yumei Xiong, Peter Fan, Julio Medina, Leping Li, Masanori Izumi, Ryo Okuyama, and Satoshi Shibuya,Potent and Orally Bioavailable GPR142 Agonists as Novel Insulin Secretagogues for the Treatment of Type 2 Diabetes,ACS Med. Chem. Lett., 2013, 4 (8), pp 790–794
39. Ashwin U. Rao, Ning Shao, Robert G. Aslanian, Tin-Yau Chan, Sylvia J. Degrado, Li Wang, Brian McKittrick, Mary Senior, Robert E. West, Jr., Shirley M. Williams, Ren-Long Wu, Joyce Hwa, Bhuneshwari Patel, Shuqin Zheng, Christopher Sondey, and Anandan Palani,Discovery of a Potent Thiadiazole Class of Histamine H3Receptor Antagonist for the Treatment of Diabetes, ACS Med. Chem. Lett., 2012, 3 (3), pp 198–202
40.John J. Acton, III, Taro E. Akiyama, Ching H. Chang, Lawrence Colwell, Sheryl Debenham, Thomas Doebber, Monica Einstein, Kun Liu, Margaret E. McCann, David E. Moller, Eric S. Muise, Yugen Tan, John R. Thompson, Kenny K. Wong, Margaret Wu, Libo Xu, Peter T. Meinke, Joel P. Berger and Harold B. Wood,Discovery of (2R)-2-(3-{3-[(4-Methoxyphenyl)carbonyl]-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl}phenoxy)butanoic Acid (MK-0533): A Novel Selective Peroxisome Proliferator-Activated Receptor γ Modulator for the Treatment of Type 2 Diabetes Mellitus with a Reduced Potential to Increase Plasma and Extracellular Fluid Volume,J. Med. Chem., 2009, 52 (13), pp 3846–3854
41. Sumihiro Nomura, Shigeki Sakamaki, Mitsuya Hongu, Eiji Kawanishi, Yuichi Koga, Toshiaki Sakamoto, Yasuo Yamamoto, Kiichiro Ueta, Hirotaka Kimata, Keiko Nakayama and Minoru Tsuda-Tsukimoto, Discovery of Canagliflozin, a Novel C-Glucoside with Thiophene Ring, as Sodium-Dependent Glucose Cotransporter 2 Inhibitor for the Treatment of Type 2 Diabetes Mellitus, J. Med. Chem., 2010, 53 (17), pp 6355–6360
42.Yoshihito Ohtake, Tsutomu Sato, Takamitsu Kobayashi, Masahiro Nishimoto, Naoki Taka, Koji Takano, Keisuke Yamamoto, Masayuki Ohmori, Marina Yamaguchi, Kyoko Takami, Sang-Yong Yeu, Koo-Hyeon Ahn, Hiroharu Matsuoka, Kazumi Morikawa, Masayuki Suzuki, Hitoshi Hagita, Kazuharu Ozawa, Koji Yamaguchi, Motohiro Kato, and Sachiya Ikeda,Discovery of Tofogliflozin, a Novel C-Arylglucoside with an O-Spiroketal Ring System, as a Highly Selective Sodium Glucose Cotransporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes,J. Med. Chem., 2012, 55 (17), pp 7828–7840
43.Hiroyuki Kakinuma, Takahiro Oi, Yuko Hashimoto-Tsuchiya, Masayuki Arai, Yasunori Kawakita, Yoshiki Fukasawa, Izumi Iida, Naoko Hagima, Hiroyuki Takeuchi, Yukihiro Chino, Jun Asami, Lisa Okumura-Kitajima, Fusayo Io, Daisuke Yamamoto, Noriyuki Miyata, Teisuke Takahashi, Saeko Uchida and Koji Yamamoto,1S)-1,5-Anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D-glucitol (TS-071) is a Potent, Selective Sodium-Dependent Glucose Cotransporter 2 (SGLT2) Inhibitor for Type 2 Diabetes Treatment, J. Med. Chem., 2010, 53 (8), pp 3247–3261.